• Title/Summary/Keyword: IMPACT FORCE

Search Result 1,422, Processing Time 0.034 seconds

A Case Study on the Structural Design Improvement of a Mold M/C's Head Slides for Smooth Motion Regarding to Inertia and Moment Impact (금형가공센터 고속 이송체의 성능 안정화를 위한 설계개선 사례)

  • 최영휴;홍진현;최응영;이재윤;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.410-415
    • /
    • 2004
  • Heavy-weight head slides may cause excessive inertia impact & moment on the machine tool structure when they move or stop abruptly during operation. Consequently these inertia impact and unbalanced moment bring transient vibrations and rough sliding motions on the machine structure. Machine tool engineers have tried many kind of feed-slide designs in order to solve this problem; for example, the design optimization of the moving structure for minimum weight and maximum stiffness, box-in-box type slide design, and so on. In this article, force and moment equilibrium equations regarding to the inertia force & moment were derived for each one of a mold M/C's head slides. Furthermore, five different design configurations of head slide assembly were reviewed for its design improvement regarding to force & moment calculations and finite element structural analysis results.

  • PDF

Analysis of a force reconstruction problem

  • Jacquelin, E.;Bennani, A.;Massenzio, M.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.237-254
    • /
    • 2005
  • This article deals with the reconstruction of an impact force. This requires to take measurements from the impacted structures and then to deconvolve those signals from the impulse response function. More precisely, the purpose of the work described here is to analyse the method of deconvolution and the problems that it implies. Thus, it is highlighted that the associated deconvolution problem depends on the location of the measurement points: it is possible or not to reconstruct the force of impact in function of the location of this point. Then, the role of the antiresonances is linked up with this problem. The singular value decomposition is used to understand these difficulties. Numerical predictions are compared and validated with experiments.

A Study on the Automatic Impact Force Control Mechanism Design for the Hydraulic (유압 브레이커의 자동타격력 제어기구 설계에 관한 연구)

  • Kang, Young Ky;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, the design of automatic impact force control mechanism of hydraulic breaker was studied. The control mechanism uses the change of piston upper chamber pressure, when the hydraulic breaker impacts various strength rock. The piston stroke is controlled by rock strength sensing valve, piston stroke switching valve, and piston control valve. It is imperative to denote the area of each valve section, the spring constant of the spring. It provides convenience to users by automatically adjusting the appropriate striking force, according to the strength of the rock. Additionally, by increasing work productivity, it can contribute to reducing greenhouse gas emissions due to fuel efficiency reduction.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running (달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화)

  • Young-Seong Lee;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force (충격가진에 의한 진동판의 방사음에 대한 동특성)

  • 오재응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

A Study of Ground Reaction Forces During Professional Golfer's Swing with Different Golf Clubs (클럽별 골프 스윙 시 지면 반력 변화에 관한 연구)

  • Hur, You-Jein;Moon, Gun-Pil;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • The purpose of this study was to analysis golf swing in accordance with each club using ground reaction force data. The subject of this study was current professional golf players in Korea. Golf clubs used for this study were driver, iron4, iron7, and pitching. The ground reaction force for left and right foot was collected by one Kistler and one Bertec force platforms. Also collected visual data by NC high speed camera to check the phase which was composed of address, top of backswing, impact and finish. Sampling rate was 600Hz both ground reaction forces data and visual data. The conclusion are as follows. 1. An aspect of change for ground reaction force was that the weight between the left foot and right foot were contrary to each other in general as the phase. 2. Without regard to the type of golf club, the ratio of necessary ground reaction forces for each phase in accordance with address, top of backswing, impact, and finish was comparatively identical. 3. According to the type of golf club, the tendency of Fy was not varied. In terms of Driver, at the moment of impact, the weight of foot-both right and left-was moved to the movement direction of golf because of the rotation force from swing.

Labor Force and Foreign Direct Investment: Empirical Evidence from Vietnam

  • NGUYEN, Cung Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.103-112
    • /
    • 2021
  • The labor force plays an important role in attracting foreign direct investment (FDI) both in developed and developing countries. In countries where there are appropriate policies for training human resources and maintaining the health of human resources, such countries have a competitive advantage and can attract FDI inflows, besides having a workforce to meet the needs of foreign investors. The purpose of this paper is to analyze the effect of the labor force and several other factors on FDI attraction in Vietnam. The empirical model is employed to perform regression and correlation on the impact of the labor force, real gross domestic product, inflation, index of business freedom, and index of investment freedom on Vietnam's FDI attraction by using a secondary time series data set during the period 1995-2018. The empirical results found that both labor force and inflation have a positive influence on FDI at a 5% significance level; index of business freedom has a positive impact on FDI at a 10% significance level, and real gross domestic product and index of investment freedom have a positive impact on FDI at a 1% significance level. From these results, this study proposes several important policy implications for Vietnam in attracting FDI in the future.