• Title/Summary/Keyword: IMEP

Search Result 105, Processing Time 0.028 seconds

The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine (커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

Effect of the Boost Pressure on Thermal Stratification on HCCI Engine Using Multi-Zone Modeling (Multi zone Modeling을 이용한 흡기관내의 과급이 온도성층화를 갖는 예혼합압축자기착화엔진에 미치는 영향에 관한 연구)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, a pressure rise rate is a major limitation for high load range and power reduction. Recently, we were able to reduce the pressure rise rate using thermal stratification. Nevertheless, this was insufficient to produce high power. In this study, the reduction of the pressure rise rate using thermal stratification was confirmed and the HCCI engine power was increased using the boost pressure. The rate and engine power were produced by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the pressure rise rate increased only slightly in the HCCI with thermal stratification.

An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME (파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Pyo, Youngduck;Lee, Youngjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines (점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF

Silicon On Insulator with Buried Alumina Layer (알루미나를 매몰절연막으로 사용한 Silicon On Insulator)

  • Bae, Young-Ho;Kwon, Jae-Woo;Kong, Dae-Young;Kwon, Kyung-Wook;Lee, Jong-Hyun;Cristoloveanu, S.;Oshima, K.;Kang, Min-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.130-132
    • /
    • 2003
  • ALD(Atomic Layer Deposition) 법으로 박막 알루미나를 형성한 후 웨이퍼 접합과 박막화 공정으로 알루미나를 매몰절연막으로 하는 SOI 구조를 제조하고 그 특성을 조사하였다. 알루미나 박막의 유전 특성과 실리콘과의 계면 특성은 C-V 측정으로, 단면 분석은 SEM(Scanning Electron Microscope) 촬영으로 조사하였다. 알루미나와 실리콘을 접합하기 위하여 1100C에서 열처리를 행한 후 알루미나와 실리콘의 계면 상태 밀도는 $2.5{\times}10^{11}/cm^2-eV$였다. 그리고 SEM의 단연 분석과 AES(Auger Electron Spectroscope)의 깊이 방향 분석을 통해서 매몰 알루미나층의 존재를 확인하였다. 알루미나는 실리콘 산화막보다 높은 열전도성을 가지므로 이를 매몰절연막으로 하여 SOI 구조를 제조하면 기존의 실리콘산화막을 매몰절연막으로 하는 SOI를 기판으로 하여 제조되는 소자보다 selg heating 효과가 감소된 우수한 특성의 소자를 제조할 수 있다.

  • PDF

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Effects of the Combustion and Emission Characteristics in a CRDI Engine Biodiesel Blended Fuel with and EGR rate (커먼레일 디젤기관에서 바이오디젤 혼합 연료와 EGR율이 연소 및 배기특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3383-3388
    • /
    • 2014
  • An experimental study was performed to compare the characteristics of the combustion pressure and exhaust emissions in the case of using pure diesel when the EGR rate was changed in a CRDI 4-cylinder diesel engine with those using biodiesel blended and pure diesel fuel. In this study, the EGR rate variation were conducted at an engine speed of 2000rpm with fuel with a biodiesel blended rate of 20%. The combustion pressure of the biodiesel blended rate 20% and pure diesel fuels decreased with increasing EGR rate. The IMEP of biodiesel was higher than that of ULSD (Ultra low sulfur diesel). The emission results showed that the NOx emission of biodiesel blended fuel with increasing EGR rate was higher than that of ULSD. In addition, the NOx emission of biodiesel blended and diesel fuel decreased with increasing EGR rate. The CO and soot, $CO_2$ emissions increased with increasing EGR rate, and the CO and soot emissions from the biodiesel blended fuel were lower than that of ULSD but the $CO_2$ emissions were higher.