• Title/Summary/Keyword: IM drive system

Search Result 63, Processing Time 0.033 seconds

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Rotor Flux Estimation of Induction Motor Using Extended Luenberger Observer (확장된 Luenberger 관측기를 이용한 유도전동기 회전자 자속추정)

  • 최연옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.600-604
    • /
    • 2000
  • In this paper authors proposed a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on theory of the extended Luenberger observer(ELO) one of a nonlinear state observer. The proposed rotor flux observer is derived from the 2 phase model of induction motor by the theory of ELO. The simulation results taken under the varying condition of rotor resistance and load torque show fast convergence of estimated rotor flux and high performance of IM drive system is achieved 표 experiment.

  • PDF

A Vector Control System for Five-Phase Squirrel-Cage Induction Motor Considering Effects of 3rd Current Harmonics Component (제3 고조파 전류성분의 영향을 고려한 5상 농형 유도전동기의 벡터제어 시스템)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.206-213
    • /
    • 2012
  • This paper propose a improved speed control system for five-phase squirrel-cage induction motor(IM) considering effects of 3rd. harmonic current components with field oriented control(FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] induction motor.

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

Control System Design of NREL 5MW Wind Turbine (NREL 5MW 풍력터빈의 제어시스템 설계)

  • Nam, Yoonsu;Im, Changhee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed (저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템)

  • Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

A Speed Control Characteristics for Five-Phase Squirrel-Cage Induction Motor Injecting 3rd Current Harmonics Component (제3 고조파 전류성분 주입에 의한 5상 농형 유도전동기의 속도제어 특성)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • This paper proposes a improved speed control system for five-phase squirrel-cage induction motor(IM) injecting 3rd. current harmonic components with field oriented control (FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current in order to high response characteristics. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[kW] induction motor.

The Modified Direct Torque Control System for Five-Phase Induction Motor Drives (5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템)

  • Kim, Min-Huei;Kim, Nom-Hun;Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.138-147
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) system for five-phase squirrel-cage induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase 1M drives present unique characteristics. Also five-phase motor drives possess many other advantages compared with the traditional three-phase motor drive system, such as reducing an amplitude of torque pulsation and increasing the reliability. The DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter. However, five-phase motor has structural drawback of 3rd space-harmonics current component, it is necessary to controlled 3rd harmonic current. So to control 3rd harmonic current and enhance dynamic characteristics of five-phase squirrel-cage IM drive, modified DTC method should be demanded. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is presented. A more precise flux and torque control algorithm for the drives can be suggested and explained For presenting the superior performance of the proposed direct torque control, experimental results are presented using a 32-[bit] fixed point TMS320F2812 digital signal processor with 2.2[kW] induction motor.

Performance Improvement of Spindle Induction Motor in Field Weakening Region Using Furry Controller (퍼지제어기를 이용한 약계자영역에서 스핀들유도전동기의 성능 개선)

  • Sin, Soo-Cheol;Yu, Jae-Sung;Hwang, Sun-Mo;Kim, Hong-Ju;Won, Chung-Yeun;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.461-466
    • /
    • 2005
  • This paper presents a new speed control scheme of the spindle induction motor (IM) using fuzzy-logic control in fold weakening region. The implementation of the proposed FLC-based spindle IM are investigated and compared to those obtained from the conventional PI controller based drive system, we have confirmed good simulation and experimental results at different dynamic operating conditions such as sudden change in command speed, step change, etc.

  • PDF

Implementation of Fuzzy-Logic-Based Indirect Vector Control for Spindle Induction Motor in Field Weakening Region (약계자 영역에서 퍼지 추론을 인용한 스핀들 유도전동기 간접벡터제어)

  • Yoon J. M.;Yu J. S.;Won C. Y.;Choi C.;Lee S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.303-307
    • /
    • 2004
  • This paper presents a new speed control scheme of the spindle induction motor (IM) using fuzzy-logic control in field weakening region. The implementation of the proposed FLC-based spindle IM are investigated and compared to those obtained from the conventional PI controller based drive system, we have confirmed good simulation and experimental results at different dynamic operating conditions such as sudden change in command speed, step change, etc.

  • PDF