• Title/Summary/Keyword: ILLUDAS model

Search Result 40, Processing Time 0.025 seconds

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

A Technique of Inland Drainage Control Considering flood Characteristics of the Han River (한강홍수특성을 고려한 내배수 처리기법)

  • Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1991
  • Rapid changes of urban hydrologic events need new management operation rule of detention reservoir which is essential outflow control system in urban area. Therefore, this study is to develop the outflow management method of Seoul city considering the Han river flood characteristics, to analyze the inundation of detention reservoir according to variation of design storm patterns, and to examine the safety of gate due to design flood water level. From this study, new operation rule is presented. The design storm patterns are determined by instantaneous intensity method and Huff's quartile method. And the inflow hydrograph of detention reservoir is obtained by applying ILLUDAS model and RRL method. The operation rule of existing drainage pump is designed to have linear relation between storage and pumping discharge. But in this study, it is effective for preventing inundation when the operation rule of drainage pump have Gaussian function which is combined the storage of detention reservoir with its inflow according to increasing or decreasing of inflow hydrograph.

  • PDF

Effects of Calculation Method of Surface Runoff on the Estimation of Flood in Urban Drainage Basin (지표면유출 해석방법이 도시 유역의 홍수량 산정에 미치는 영향)

  • Lee, Jong Tae;Yoon, Sei Eui;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 1994
  • The effects of the calculation method of surface runoff on the estimation of flood in urban drainage basin were analyzed in this study. In comparing with surface runoff methods. RUNOFF, ILLUDAS, SBUH and RRL were investigated. To route the flow in sewer/conduits EXTRAN was applied. The Kings Creek and Gray Haven drainage basin's measured data of rainfall and runoff were used in comparing the computed results. The results show that the greatest effect factor on surface runoff in urban small area is the concentration time. The results estimated by each model which are composed with EXTRAN show that the scheme for surface runoff gives considerable effect on the flood hydrograph in urban drainage system. RUN-EX method gives the most similar simulation results among the surface runoff models, and is more applicable for paved and unpaved basins than others.

  • PDF

A Study on the Variation of Runoff and Travel Time in Urban Stream due to Watershed Development (유역개발에 따른 도시하천에서의 유출량 및 도달시간 변화에 관한 연구)

  • 서규우;배덕효
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 1996
  • The subject research attempts to evaluate the variations of total runoff volume, peak flow, and travel time depending on the urbanhization, return periods and rainfall patterns under the situations that the preparation of a large residential site at the lowland areas of the downstream of Dongsu stream in Bupyung-Gu, Incheon city is progressed and the area will be eventually fully developed. The ILLUDAS model was used for the runoff analyses based on 3 differend steps of urbanization and 4 different types of Huff's quantile according to rainfall patterns is Huff's 4 quantile, Huff's 2 quantile, Huff's 3 quantile and Huff's 1 quantile. Under the 80 and 90 % of urbanization to the 70% of urbanization, the mean increasing ratio of total runoff volume for each case is 3.5 and 5.5 %, that of peak flow is 4.2 and 8.8%, and the mean decreasing ratio of travel time is 4.4 and 10.1%, respectively. The mean increasing ratio of total runoff volume according to the return periods is 3.0 and 5.4%, that of peak flow is 3.9 and 8.0% under the same conditions of urbanization.

  • PDF

Correlation Analysis of Watershed Characteristics and the Critical Duration of Design Rainfall (설계강우의 임계지속기간과 유역특성인자의 상관성 분석)

  • Lee, Jung-Sik;Sin, Chang-Dong;Lee, Bong-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this study is to analyze the relationship between the watershed characteristics and the critical duration of design rainfall. For estimation of critical duration, adjustment Huff's method and ILLUDAS urban runoff model were applied to urban 21 areas. Watershed characteristics such as area, channel length, channel slope, shape factor, and pipe density were used to simulate correlation analysis. The conclusions of this study are as follows; it is revealed that critical duration is influenced by the watershed characteristics such as pipe density, area and channel length. Also, multiple regression analysis using watershed characteristics is carried out and the determination coefficient of multiple regression equation shows 0.972.

  • PDF

Development and Verification of Inundation Model Considering Storm Sewers in Urban Area (도시배수체계와 연계한 침수모형의 개발 및 검증)

  • Han, Kun-Yeun;Lee, Chang-Hee;Kim, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.159-162
    • /
    • 2005
  • Urban flooding is usually caused by the surcharge of storm sewers. For that reason, domestic studies about urban flooding are concentrated on the simulation of urban drainage system. However these approaches that find the pipes which have insufficient drainage capacity are very approximate and unreasonable ways. In this study, an accurate mathematical modeling is developed to analyze the impacts of an urban inundation for both flood prevention and flood-loss reduction planning and it is verified by using the simulation of July 2001 flooding in Seoul. The result of this study can be used to construct fundamental data for a flood control plan and establish a urban flood forecasting/warning system.

  • PDF

Flood Runoff Characteristics in Urbanized Basin (도시화 유역에서의 홍수 유출 특성)

  • 한국희;이길춘
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This study is runoff analysis of the recently urbanized San Bon basin. The relationships between peak discharge and total discharge were examined by applying the ILLUDAS runoff analysis model to the measured data. In urbanized streams, it is found that channel adjustment had the most significant effect on the increase of peak discharge. Significant increases in the peak discharge occurred as rainfall duration or return period increases 10% and 7~16% increases in peak discharge were observed when the roughness coefficient were 0.04 and 0.015, respectively. When the natural river channel with n=0.04 was converted into a sewerage system of n=0.015 the peak discharge was greatly increased by 51~158%, Generally, flood peak discharge was increased during heavy rain, but in the case of urbanized basin, river stage was reduced owing to an increase of flow velocity by the adjustment of drainage system.

  • PDF

Design of Detention Pond and Critical Duration of Design Rainfall in Seoul

  • Lee, Jong-Tae;Yoon, Sei-Eui;Lee, Jae-Joon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.33-43
    • /
    • 1994
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribytion of the design rainfall, Huff's quartile method is used for the 9 cases of durations (ranges from 20 to 240 minutes) with ten years return period, and the ILLUDAS model is used for runoff analysis. The storage ratio, which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the criticalduration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watercheds with pump station in Seoul, of which the range of watershed area is 0.24~12.70$km^2$. The result of simulation shows that the duration which maximizes storage ratio is 30 and 60 minutes on the whole. It is also shown that the storage ratios of 2nd - and 3rd-quartile pattern are larger than those of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by the regression analysis between the maximum storage ratio and the peak ratio. This formula can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF

A Study on the Risk - based Local Normal CSOs Curve Designs (위험도 기반 지역별 정규 CSOs 곡선 설계에 관한 연구)

  • Jo Deok-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.575-581
    • /
    • 2006
  • This paper presents a systematic approach for the economical design of stormwater quality control systems. For the design of runoff quality control system (RQCS), the rainfall-runoff process requires the local rainfall data recorded continuously. In this study the rainfall probability distribution is assumed to follow an exponential decay function. Applying the exponential decay function, the normalized curves are derived to explain the non-exceedance probability distributions. The optimal curves for the determination of the RQCS size are derived based on the overflow risk. Comparison of the optimal capture volume and peak runoff rate to those computed by an urban rainfall-runoff model(ILLUDAS) demonstrates that the optimal CSOs(Combined Sewer Overflows) curves derived in this study can be utilized for the design of stormwater quality control systems in Korea avoiding an excessive computational effort based on over flow risks.

Design of Edtention Pond and Critical Duration of Design Rainfall in Seoul (유수지 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이종태;윤세의
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribution of the design rainfall, Huff's quartile method is used for the 9 cases of durations ranging from 20 to 240 minutes with 10 years return period, and the ILLUDAS model is used for runoff analysis. The storage ration which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the critical duration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watersheds with pump station in Seoul, of which the range of watershed area is $0.24-12.70\textrm{km}^2.$ The result of simulation shows that the duration which maximizes storage ration is 30 and 60 minutes on the whole. It is shown also that the storage ration of 2nd- and 3rd-quartile pattern is larger than that of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by using the regression analysis between the maximum storage ration and the peak ratio, and can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF