• Title/Summary/Keyword: IL-4 receptor

Search Result 429, Processing Time 0.023 seconds

Differential Effects of Anti-IL-1R Accessory Protein Antibodies on IL-1α or IL-1β-induced Production of PGE2 and IL-6 from 3T3-L1 Cells

  • Yoon, Do-Young;Dinarello, Charles A.
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.562-570
    • /
    • 2007
  • Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-$1\beta$-induced productions of IL-6 and PGE2 from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, antipeptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-$1\beta$ compared to IL-$1\alpha$. IL-1-induced IL-6 production was augmented by coincubation with PGE2. The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE2 production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE2. However, the effect of PGE2 is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Role of Protease Activated Receptor 2 (PAR2) in Aspergillus Protease Allergen Induces Th2 Related Airway Inflammatory Response (Aspergillus 단백분해효소 알러젠에 의해 유도된 Th2 관련 기도염증반응에서 protease activated receptor 2 (PAR2)의 역할)

  • Yu, Hak-Sun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.503-510
    • /
    • 2010
  • Most allergens have protease activities, suggesting that proteases may be a key link between Th2-type immune reactions in allergic responses. Protease activated receptor (PAR) 2 is activated via the proteolytic cleavage of its N-terminal domain by proteinases. To know the role of PAR2 in Aspergillus protease allergen activated Th2 immune responses in airway epithelial cells, we investigated and compared immune cell recruitment and level of chemokines and cytokines between PAR2 knock out (KO) mice and wild type (WT) mice. There were evident immune cell infiltrations into the bronchial alveolar lavage fluid (BALF) of WT mice, but the infiltrations in PAR2 KO mice were significantly lowered than those of WT mice. The IL-25, TSLP, and eotaxin gene expressions were profoundly increased after Aspergillus protease, but their expression was significantly lowered in PAR2 KO mice in this study. Compared to PAR2 KO mice, OVA specific IgE concentrations in serum of WT mice were quite increased; moreover, the IgE level of PAR2 KO mice was lower than in WT mice. The IL-25 expression by Aspergillus protease stimulation was significantly reduced by p38 specific inhibitor treatment. In this study, we determined that Th2 response was initiated with IL-25 and TSLP mRNA up-regulation in lung epithelial cells via PAR2 after Aspergillus protease allergen treatment.

Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells

  • Park, Sung Lyea;Lee, Bo Kyung;Kim, Young-Ae;Lee, Byung Ho;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflmmatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-$1{\beta}$ and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-$1{\beta}$, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.

Growth Factor Receptor Expression on Brain Tumor Cell Lines : Preliminary Study for in vitro and in vivo Experiments of Immunotoxin Therapy (뇌종양세포주에서의 성장인자수용체의 발현 : 면역독소 치료의 연구를 위한 예비실험)

  • im, Ki-Uk;Ni, Hsiao-Tzu;Low, Walter C.;Hall, Walter A.
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.731-737
    • /
    • 2000
  • Objective : Growth factor receptors on the tumor cells are known to be expressed highly allowing the tumor cells to bind growth factors to stimulate cellular division. Immunotoxin therapy is one of the novel approaches to the primary malignant brain tumor, and expression of cell-surface receptor is essential for the immunotoxin to have specific anti-tumor activity. Despite promising cytotoxic activity of immunotoxin, tumor responses are not curative on clinical trials, and additional studies are needed regarding various factors influencing the efficacy of the immunotoxin. The purpose of this study is to detect the expression of various growth factor receptors on brain tumor cell lines which are going to be used in these studies. Materials and Methods : The authors detected transferrin receptor(TR), insulin-like growth factor-1 receptor(IGF-1R), and interleukin-4 receptor(IL-4R) on medulloblastoma cell line(Daoy) and glioblastoma cell lines(U373 MG and T98 G) by flow cytometric analysis. Results : TR was expressed on Daoy, U373 MG, and T98 G. IGF-1R was expressed on Daoy and U373 MG, but not on T98 G. IL-4R was expressed on all cell lines tested. Conclusion : The transferrin and interleukin-4 receptors might be good targets for immunotoxin therapy. The results should be considered in additional in vitro and in vivo studies regarding immunotoxin and in establishing the proper treatment model of the immunotoxin therapy including selection of the adequate immunotoxin.

  • PDF

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

Tyrosine phosphorylation as a signaling component for plant improvement

  • Park, Youn-Il;Yang, Hyo-Sik;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • Plant genome analyses, including Arabidopsis thaliana showed a large gene family of plant receptor kinases with various extracellular ligand-binding domain. Now intensively studies to understand physiological and cellular functions for higher plant receptor kinases in diverse and complex biological processes including plant growth, development, ligands perception including steroid hormone and plant-microbe interactions. Brassinosteroids (BRs) as a one of well know steroid hormone are plant growth hormones that control biomass accumulation and also tolerance to many biotic and abiotic stress conditions and hence are of relevance to agriculture. BRI1 receptor kinase, which is localized in plasma membrane in the cell sense BRs and it bind to a receptor protein known as BRASSINOSTEROID INSENSITIVE 1 (BRI1). Recently, we reported that BRI1 and its co-receptor, BRI1-ASSOCIATED KINASE (BAK1) autophosphorylated on tyrosine residue (s) in vitro and in vivo and thus are dual-specificity kinases. Other plant receptor kinases are also phosphorylated on tyrosine residue (s). Post-translational modifications (PTMs) can be studied by altering the residue modified by directed mutagenesis to mimic the modified state or to prevent the modification. These approaches are useful to not only characterize the regulatory role of a given modification, but may also provide opportunities for plant improvement.

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.

Association of miR-1266 with Recurrence/Metastasis Potential in Estrogen Receptor Positive Breast Cancer Patients

  • Sevinc, Elif Demirdogen;Egeli, Unal;Cecener, Gulsah;Tezcan, Gulcin;Tunca, Berrin;Gokgoz, Sehsuvar;Tasdelen, Ismet;Tolunay, Sahsine;Evrensel, Turkkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.291-297
    • /
    • 2015
  • The Homeobox B13 (HOXB13):Interleukin 17 Receptor B (IL17BR) index of estrogen receptor (ER)-positive breast cancer (ER (+) BC) patients may be a potential biomarker of recurrence/ metastasis. However, effects of microRNA (miRNA) binding to the 3' untranslated region (3' UTR) of HOXB13 and IL17BR and its function on recurrence/metastasis in ER (+) BC remains elusive. The aims of this study were to determine the expression of miRNAs that bind to 3' UTR of HOXB13 and IL17BR in ER (+) BC patients and asess the effects of these miRNAs on recurrence/metastasis. The expression profiles of HOXB13 and IL17BR were evaluated using RT-PCR in tumors and normal tissue samples from 40 ER (+) BC patients. The expression level of 4 miRNAs, which were predicted to bind the 3' UTR of HOXB13 and IL17BR using TargetScan, microRNA.org and miRDB online databases, were further evaluated with RT-PCR. Our findings demonstrated that high miR-1266 levels might be significant prognostic factor for recurrence/metastasis occurrence (3.05 fold p=0.004) and tamoxifen response (3.90 fold; p=0.2514) in ER (+) BC cases. Although we suggest that modulation of miR-1266 expression may be an important mechanism underlying the chemoresistance of ER (+) BC, advanced studies and validation are required.

Effect of Bu-Zhong-Yi-Qi-Tang on Proliferation of T Cells (보중익기탕의 T세포 증식 유도 효과)

  • 채수연;신성해;하미혜;조성기;김성호;변명우;이성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1085-1091
    • /
    • 2004
  • Bu-Zhong-Yi-Qi- Tang extracts is a traditional oriental medicine in a mixture type exhibiting strong anti-bacterial, analgesic, and chemopreventive activities. In this study, we have evaluated effects of the total and polysaccharide fraction of Bu-Zhong-Yi-Qi- Tang extracts on the T cell proliferation, cytokine production, and induction of IL-2 receptor and MHC class n. For this experiment, we established CD4$^{+}$ CD8$^{[-10]}$ T cell line producing IL-2 and IFN-${\gamma}$ when stimulated with ovalbumin antigen in the presence of antigen presenting cells. The significant effect of Bu-Zhong-Yi-Qi-Tang on antigen-induced T cell proliferation in the presence of antigen presenting cells was observed. The proliferation and IFN-${\gamma}$ production of T cells was increased in a dose dependent manner, and expression of IL-2 receptor on T cells and MHC class n molecule on antigen presenting cells was also induced in the presence of Bu-Zhong-Yi-Qi-Tang polysaccharide fraction. It was demonstrated that polysaccharide fraction of Bu-Zhong-Yi-Qi-Tang stimulates the antigen-induced T cell proliferation and the production of IFN-${\gamma}$ possibly through the increase of IL-2 receptor and MHC class n expression. Therefore Bu-Zhong-Yi-Qi-Tang can be regarded as a natural and useful immunomodulator having a relatively nonotoxic property. Further studies are needed to better characterize the nature of Bu-Zhong- Yi-Qi-Tang extract.