• 제목/요약/키워드: IL-1β

검색결과 754건 처리시간 0.033초

Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과 (Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle)

  • 이현아;김지은;최준영;성지은;윤우빈;손홍주;이희섭;강현구;황대연
    • 생명과학회지
    • /
    • 제30권4호
    • /
    • pp.331-342
    • /
    • 2020
  • 미세교세포(Microglial cells)에서 신경염증반응(neuroinflammatory responses)의 억제는 알츠하이머질환, 파킨슨질환, 헌팅턴질환과 같은 신경퇴행성질환(neurodegenerative diseases)을 치료하기 위한 주요 표적으로 고려되고 있다. 천문동(Asparagus cochinchinesis)은 열, 기침, 신장 질환, 유방암, 염증성질환 및 뇌질환을 치료하는 데 오랫동안 사용 되어온 전통 치료제(Traditional medicine)이다. 본 연구에서는 lipopolysaccharide (LPS)로 활성화된 BV-2 미세교세포에서 항염증효과가 있는 천문동 뿌리 열수추출물(Aqueous extract from A. cochinchinesis root, AEAC)의 신경보호 메커니즘을 연구하였다. 먼저, 어떤 유의적인 세포독성은 플라보노이드(flavonoid), 페놀(phenol), 사포닌(saponin)을 함유하는 AEAC를 4가지 농도로 처리된 BV-2세포에서 검출되지 않았다. 또한, nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA 및 inducible nitric oxide synthase (iNOS) mRNA 수준은 AEAC+LPS 처리군에서 비하여 21%정도 감소하였다. 전염증성 사이토카인(TNF-α과 IL-1β) 및 항염증성 사이토카인(IL-6와 IL-10)농도에 대한 유사한 감소는 비록 감소비율은 다르지만, Vehicle+LPS 처리군에 비해 AEAC+LPS 처리군에서 검출되었다. 더불어, LPS 처리 후 mitogen-activated protein (MAP) kinase의 인산화수준의 증가는 AEAC 전처리군에서 유의하게 회복되었고, 세포주기에서 G2/M의 억제(arrest)는 AEAC+LPS 처리군에서 개선되었다. 또한, LPS 처리로 유도된 ROS의 증가도 AEAC 전처리군에서 감소되었다. 따라서, 이러한 결과는 AEAC가 MAPK 신호전달 경로, 세포주기 및 ROS (reactive oxygen species) 생성의 조절을 통해 LPS 자극에 대한 항신경염증 활성을 유도함을 제시하고 있다.

황 산화를 통해 퍼클로레이트를 분해하는 미생물 군집 분석 (Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community)

  • 김영화;한경림;황희재;권혁준;김예림;김건우;김희주;손명화;최영익;성낙창;안영희
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.68-74
    • /
    • 2016
  • 퍼클로레이트(ClO4)는 지표수 및 토양/지하수에서 검출되는 신규 오염물이다. 이전 연구에서 저렴한 원소 황(elemental sulfur, S0) 입자와 쉽게 구할 수 있는 활성슬러지를 이용하여 독립영양방식으로 ClO4를 제거할 수 있다는 실험적 증거가 제시되었다. 또한 식종균으로서 농화배양 미생물을 사용했을 때 활성슬러지보다 제거효율과 시간면에서 우수한 결과를 나타내었다. 그래서 본 연구에서는 황을 산화하여 독립영양방식으로 ClO4를 분해하는 농화배양 미생물 군집을 PCR-DGGE로 분석하였다. 이 농화배양 미생물은 초기농도가 약 120 mg ClO4/l 일 때 7일 후 99.71% 이상의 ClO4- 제거 효율을 나타내었다. 농화배양 미생물과 그것의 식종균으로 부터 genomic DNA를 추출하여 16S rRNA 유전자의 PCR-DGGE 분석에 사용하였다. PCR-DGGE 분석결과 농화배양 미생물과 식종균 시료들이 다른 밴드패턴을 나타냄에 따라 이 두 시료의 군집조성이 다름을 확인하였다. 이는 농화배양되는 동안 식종된 미생물이 그 환경에 잘 생장하는 미생물로 군집조성이 변화한 것으로 여겨진다. 농화배양 미생물군집에는 β-Proteobacteria, Bacteroidetes, 그리고 Spirochaetes 강에 속하는 개체군들이 우점하는 것으로 나타났다. 향후 이 우점 개체군들의 순수분리와 더불어 황 산화를 통한 ClO4 분해 환경에서 이들의 대사적 역할을 규명할 필요가 있다.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

가미생맥산(加味生脈散) 및 개별약재의 항산화 및 항염증 효능에 대한 비교 연구 (Anti-Oxidative and Anti-inflammatory Effect of Combined Extract and Individual Extract of GamiSaengmaeksan)

  • 지중구
    • 대한본초학회지
    • /
    • 제31권1호
    • /
    • pp.69-75
    • /
    • 2016
  • Objectives : The aim of this study is to investigate the various effects of individual or combined extract of GamiSaengmaeksan (GSS) on cell viability, anti-inflammatory and antioxidant activityMethods : In order to evaluate cytotoxicity, MTT assay was performed. We investigated the levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 and interleukin (IL)-1β, and nitric oxide(NO) in LPS-induced RAW 264.7 cells to check the effects on anti-inflammatory activity. The level of NO production in RAW 264.7 cells was measured by using Griess reagent. The levels of cytokines and ROS were measured by Luminex and Flow cytometry, respectively.Results : At concentration of 200 ㎍/㎖ GSS, cytotoxicity was observed in RAW 264.7 cells. However, at concentration less than 100 ㎍/㎖ of both combine and individual GSS, cytotoxicity was not observed in Raw 264.7 cells. However, the level of ROS in RAW 264.7 cells were decreased at both extract of 100 ㎍/㎖ GSS. Also, the level of NO in RAW 264.7 cells were decreased from extraction of concentration of 100 ug/ml in GSS and individual-extraction of Liriopis Tuber, White Ginseng and Glycyrrhizae Radix. In addition, productions of pro-inflammatory cytokines (TNF-α) in LPS-induced RAW 264.7 cells were decreased from extraction of concentration of 10 and 100 (㎍/㎖) in GSS and individual-extraction of Liriopis Tuber.Conclusions : It is concluded that combined extract of GSS appears to be more effective in anti-oxidation and anti-inflammatory effect than those in individual-extraction of GSS. These results may be developed as a raw material for new therapeutics to ease the symptoms related with inflammatory and oxidative stress.

MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages

  • Youn, Gi Soo;Park, Jong Kook;Lee, Chae Yeon;Jang, Jae Hee;Yun, Sang Ho;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.223-228
    • /
    • 2020
  • Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of pro-inflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages.

Establishment of inflammatory model induced by Pseudorabies virus infection in mice

  • Ren, Chun-Zhi;Hu, Wen-Yue;Zhang, Jin-Wu;Wei, Ying-Yi;Yu, Mei-Ling;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.20.1-20.13
    • /
    • 2021
  • Background: Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. Objectives: Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. Methods: Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. Results: At 105-106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 102 TCID50 of PRV produced a significant inflammatory mediator increase. Conclusions: An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

Multifunctional Probiotic and Functional Properties of Lactiplantibacillus plantarum LRCC5314, Isolated from Kimchi

  • Yoon, Seokmin;Cho, Hyeokjun;Nam, Yohan;Park, Miri;Lim, Ahyoung;Kim, Jong-Hwa;Park, Jaewoong;Kim, Wonyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.72-80
    • /
    • 2022
  • In this study, the survival capacity (acid and bile salt tolerance, and adhesion to gut epithelial cells) and probiotic properties (enzyme activity-inhibition and anti-inflammatory activities, inhibition of adipogenesis, and stress hormone level reduction) of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi (Korean traditional fermented cabbage), were investigated. LRCC5314 exhibited very stable survival at ph 2.0 and in 0.2% bile acid with 89.9% adhesion to Caco-2 intestinal epithelial cells after treatment for 2 h. LRCC5314 also inhibited the activities of α-amylase and α-glucosidase, which are involved in elevating postprandial blood glucose levels, by approximately 72.9% and 51.2%, respectively. Treatment of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with the LRCC5314 lysate decreased the levels of the inflammatory factors nitric oxide, tumor necrosis factor (TNF-α), interleukin (IL)-1β, and interferon-γ by 88.5%, 49.3%, 97.2%, and 99.8%, respectively, relative to those of the cells treated with LPS alone. LRCC5314 also inhibited adipogenesis in differentiating preadipocytes (3T3-L1 cells), showing a 14.7% decrease in lipid droplet levels and a 74.0% decrease in triglyceride levels, as well as distinct reductions in the mRNA expression levels of adiponectin, FAS, PPAR/γ, C/EBPα, TNF-α, and IL-6. Moreover, LRCC5314 reduced the level of cortisol, a hormone with important effect on stress, by approximately 35.6% in H295R cells. L. plantarum LRCC5314 is identified as a new probiotic with excellent in vitro multifunctional properties. Subsequent in vivo studies may further demonstrate its potential as a functional food or pharmabiotic.

Anti-Inflammatory Effects of Abalone (Haliotis discus hannai) Viscera via Inhibition of ROS Production in LPS-Stimulated RAW 264.7 Cells

  • Shin, Tai-Sun;Choi, Kap Seong;Chun, Jiyeon;Kho, Kang-Hee;Son, Seon Ah;Shim, Sun-Yup
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2022
  • Haliotis discus hannai called abalone, is the valuable marine mollusks and the by-products of abalone processing are viscera. Brownish abalone male viscera (AMV), which have not been reported as having anti-inflammatory effects, was extracted with acetone and fractionated by different six acetone/hexane ratios (0, 10, 20, 30, 40, and 100%) using a silica column via in vitro ABTS and DPPH radical and nitric oxide (NO) production assay-guided fractionation. Among the fractions, the acetone/hexane ratio 40%, A40 exhibited the most potent radical scavenging activities and inhibition of lipopolysaccharide (LPS)-induced NO production without cytotoxicity. A40 inhibited LPS-induced intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Western blot analysis revealed that A40 down-regulated the activation of NF-κB, MAPK (ERK 1/2, p-38, and JNK), and inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Moreover, this fraction inhibited the generation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. These results suggested that AMV containing A40 with anti-inflammatory and anti-oxidantive effects, is the effective therapeutic and functional material for treating inflammatory disorders.

Effect of Solcoseryl in Corneal Alkali Burn Rat Model

  • Kim, Hoon;Kim, Hong-Bee;Seo, Jae-Hwi;Lee, Dong Cho;Cho, Kyong Jin
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.22-30
    • /
    • 2021
  • Background and Objectives Ocular alkali burns cause severe damage to the ocular tissues and vision loss. Solcoseryl is a standardized calf blood extract that normalizes the metabolic disturbance and aids in maintaining the chemical and hormonal balance and has been used to treat burns in various tissues. This study examined the effects of Solcoseryl on a rat corneal alkali burn model. Materials and Methods Twenty rats were assigned randomly to four equal groups, including alkali burn, hyaluronic acid, Solcoseryl eyedrop, and Solcoseryl gel. A corneal alkali burn was induced by a NaOH-soaked paper disc. The treatments were given twice a day, every day. The wound area was measured after 24 and 48 hours, and the degree of neovascularization and corneal opacity were scored every week. The rats were sacrificed after three weeks for immunohistochemistry (IHC) to compare the level of inflammatory cytokines, IL-1β, IL-6, and TNF-α. The thickness of the retinal layers was compared to observe any changes in the retina. Results The use of Solcoseryl on corneal alkali burn accelerated wound healing with less neovascularization, greater opacity, and less cataract. IHC showed that the inflammation of the cornea was controlled by both the hyaluronic acid and Solcoseryl treatments. On the other hand, the inflammation had spread to the retina. When the dosage forms were compared, eyedrops were more effective on corneal inflammation, while the gel-type had a greater effect on retinal inflammation. Conclusion Solcoseryl was effective in accelerating the wound healing rate on a corneal alkali burn but could not prevent the spread of inflammation from the cornea to the retina. Eyedrops were more effective on inflammation in the cornea, and the gel was more effective in the retina.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.