• Title/Summary/Keyword: IKONOS satellite image

Search Result 161, Processing Time 0.028 seconds

The Improvement of RFM RPC Using Ground Control Points and 3D Cube

  • Cho, Woo-Sug;Kim, Joo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1143-1145
    • /
    • 2003
  • Some of satellites such as IKONOS don't provide the orbital elements so that we can’ utilize the physical sensor model. Therefore, Rational Function Model(RFM) which is one of mathematical models could be a feasible solution. In order to improve 3D geopositioning accuracy of IKONOS stereo imagery, Rational Polynomial Coefficients(RPCs) of the RFM need to be updated with Ground Control Points(GCPs). In this paper, a method to improve RPCs of RFM using GCPs and 3D cube is proposed. Firstly, the image coordinates of GCPs are observed. And then, using offset values and scale values of RPC provided, the image coordinates and ground coordinates of 3D cube are initially determined and updated RPCs are computed by the iterative least square method. The proposed method was implemented and analyzed in several cases: different numbers of 3D cube layers and GCPs. The experimental results showed that the proposed method improved the accuracy of RPCs in great amount.

  • PDF

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

Comparing LAI Estimates of Corn and Soybean from Vegetation Indices of Multi-resolution Satellite Images

  • Kim, Sun-Hwa;Hong, Suk Young;Sudduth, Kenneth A.;Kim, Yihyun;Lee, Kyungdo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.597-609
    • /
    • 2012
  • Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of IKONOS, Landsat TM, and MODIS satellite images using empirical models and demonstrates its use with data collected at Missouri field sites. LAI data were obtained several times during the 2002 growing season at monitoring sites established in two central Missouri experimental fields, one planted to soybean (Glycine max L.) and the other planted to corn (Zea mays L.). Satellite images at varying spatial and spectral resolutions were acquired and the data were extracted to calculate normalized difference vegetation index (NDVI) after geometric and atmospheric correction. Linear, exponential, and expolinear models were developed to relate temporal NDVI to measured LAI data. Models using IKONOS NDVI estimated LAI of both soybean and corn better than those using Landsat TM or MODIS NDVI. Expolinear models provided more accurate results than linear or exponential models.

Analysis of Image Integration Methods for Applying of Multiresolution Satellite Images (다중 위성영상 활용을 위한 영상 통합 기법 분석)

  • Lee Jee Kee;Han Dong Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.359-365
    • /
    • 2004
  • Data integration techniques are becoming increasing1y important for conquering a limitation with a single data. Image fusion which improves the spatial and spectral resolution from a set of images with difffrent spatial and spectral resolutions, and image registration which matches two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged have been researched. In this paper, we compared with six image fusion methods(Brovey, IHS, PCA, HPF, CN, and MWD) with panchromatic and multispectral images of IKONOS and developed the registration method for applying to SPOT-5 satellite image and RADARSAT SAR satellite image. As the result of tests on image fusion and image registration, we could find that MWD and HPF methods showed the good result in term of visual comparison analysis and statistical analysis. And we could extract patches which depict detailed topographic information from SPOT-5 and RADARSAT and obtain encouraging results in image registration.

Spectral Quality Enhancement of Pan-Sharpened Satellite Image by Using Modified Induction Technique (수정된 영상 유도 기법을 통한 융합영상의 분광정보 향상 알고리즘)

  • Choi, Jae-Wan;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • High-spatial resolution remote sensing satellites (IKONOS-2, QuickBird and KOMPSAT-2) have provided low-spatial resolution multispectral images and high-spatial resolution panchromatic images. Image fusion or Pan-sharpening is a very important in that it aims at using a satellite image with various applications such as visualization and feature extraction through combining images that have a different spectral and spatial resolution. Many image fusion algorithms are proposed, most methods could not preserve the spectral information of original multispectral image after image fusion. In order to solve this problem, modified induction technique which reduce the spectral distortion of fused image is developed. The spectral distortion is adjusted by the comparison between the spatially degraded pan-sharpened image and original multispectral image and our algorithm is evaluated by QuickBird satellite imagery. In the experiment, pan-sharpened image by various methods can reduce spectral distortion when our algorithm is applied to the fused images.

  • PDF

Generation of Epipolar Image Using Different Types of Satellite Sensors Images (이종 위성센서 영상을 이용한 에피폴라 영상 제작)

  • Sung, Mingyu;Choi, Sunyong;Jang, Seji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, the epipolar images were created by both methods of resolution adjustment and piecewise approach using RPC(Rational Polynomial coefficients) and ancillary data of IKONOS-2 and SPOT-5 satellite images whose resolutions are different from each other. The stereo geometry of these two satellite images was analyzed and the RPC block modelling was accomplished for generating epipolar images. In order to evaluate the accuracy of created epipolar images, the y-parallaxes were analyzed for the specific points which were apparently identified in mountainous, plain and urban area. Also the RMSEs of the specific points were calculated using the coordinates from the epipolar stereo images and the coordinates from the block triangulation. Y-parallaxes were within one pixel and the RMSEs were within two meters for X, Y and Z each.

Classification of Sedimentary Facies Using IKONOS Image in Hwangdo Tidal Flat, Cheonsu Bay (IKONOS 영상을 이용한 천수만 황도 갯벌 표층 퇴적상 분류)

  • Ryu, Joo-Hyung;Woo, Han Jun;Park, Chan-Hong;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • To classify the surface sedimentary facies using IKONOS image collected over Hwangdo tidal flat in Cheonsu Bay, the optical reflectance was compared for characterizing various sedimentary environments such as grain size, tidal channel pattern and area ratio of surface remnant water. The intertidal DEM (Digital Elevation Model) was generated by echo-sounder for analyzing the relationship between IKONOS image and sedimentary environments including topography. The boundary of the optical reflectance between mud-mixed facies and sand facies was distinct, and discrimination of the associated sandbar feature was also possible. The mud-mixed facies coupled with intricate tidal channels is confined to the relatively hi호 topography of Hwangdo tidal flat. The boundary between mud and mixed flat was indistinct in IKONOS optical reflectance but it would have a difference in the area ratio of surface remnant water. The dark area in the image represented the well developed sand facies having a lot of surface remnant water due to the relatively low surface topography. The overall accuracy of characterizing the surface sediment facies by maximum likelihood classification method was 86.2 %. These results demonstrate that high spatial resolution satellite imagery such as IKONOS coupled with knowledge of grain size, surface remnant water and tidal channel network can be effectively used to characterize the surface sedimentary facies (mud, mixed and sand) network of the tidal flat environments.

  • PDF

Utilization of Satellite Image for Cadastral Surveying (지적세부측량을 위한 위성영상의 활용)

  • 이종출;차성렬;김남식;강윤성
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Recently, Ministry of Government Administration and Home Affairs and Local Governments drafted plan to digitize cadastral maps for making effective land management and development. Cadastral map have difference in comparison with actual area's boundary since they used long time and continuously. In this study, verification of accuracy has concerned in comparison with cadastral map and IKONOS satellite image which has geometrical correction.

  • PDF

A Study on Winter-Covered Optical Satellite Imagery for Post-Eire Forest Monitoring

  • Kim, Choen;Park, Seung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.274-274
    • /
    • 2002
  • Damage to forest trees, caused by wildfire, changes their spectral reflectance signature. This factor led to the initiation of a research project at the Remote Sensing & GIS Laboratory, Kookmin University, to determine if multispectral data acquired by IKONOS could provide fire scar and bum severity mapping. This paper will present detail mapping of burned areas in the eastern coast of Korea with IKONOS imagery. In addition, a single post-burn Landsat-7 ETM+ data was used to compare with IKONOS, the study area. Burn severity map based on IKONOS image was found to be affected by strong topographic illumination effects in the mountain forest. But it has better the delineation of the bum-scarred area. In this study the NDVI was analyzed for geometric illumination conditions influenced by topography(slop, aspect and elevation) and shadow(solar elevation and azimuth angle).

  • PDF

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.