• Title/Summary/Keyword: IKONOS image

Search Result 210, Processing Time 0.02 seconds

The Improvement of RFM RPC Using Ground Control Points and 3D Cube

  • Cho, Woo-Sug;Kim, Joo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1143-1145
    • /
    • 2003
  • Some of satellites such as IKONOS don't provide the orbital elements so that we can’ utilize the physical sensor model. Therefore, Rational Function Model(RFM) which is one of mathematical models could be a feasible solution. In order to improve 3D geopositioning accuracy of IKONOS stereo imagery, Rational Polynomial Coefficients(RPCs) of the RFM need to be updated with Ground Control Points(GCPs). In this paper, a method to improve RPCs of RFM using GCPs and 3D cube is proposed. Firstly, the image coordinates of GCPs are observed. And then, using offset values and scale values of RPC provided, the image coordinates and ground coordinates of 3D cube are initially determined and updated RPCs are computed by the iterative least square method. The proposed method was implemented and analyzed in several cases: different numbers of 3D cube layers and GCPs. The experimental results showed that the proposed method improved the accuracy of RPCs in great amount.

  • PDF

DIRECT EPIPOLAR IMAGE GENERATION FROM IKONOS STEREO IMAGERY BASED ON RPC AND PARALLEL PROJECTION MODEL

  • Oh, Jae-Hong;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.860-863
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (2D Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

  • PDF

Direct Epipolar Image Generation From IKONOS Stereo Imagery Based On RPC and Parallel Projection Model

  • Oh, Jae-Hong;Shin, Sung-Woong;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.451-456
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (20 Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

DEM generation from an IKONOS stereo pair using EpiMatch and Graph-Cut algorithms

  • Kim, Tae-Jung;Im, Yong-Jo;Kim, Ho-Won;Kweon, In-So
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.524-529
    • /
    • 2002
  • In this paper, we report the development of two DEM (digital elevation model) generation algorithms over urban areas from an IKONOS stereo pair. One ("EpiMatch") is originally developed for SPOT images and modified for IKONOS images. It uses epipolar geometry for accurate DEM generation. The other is based on graph-cut algorithm in 3D voxel space. This algorithm is believed to work better on height discontinuities than EpiMatch. An IKONOS image pair over Taejon city area was used for tests. Using ground control points obtained from differential GPS, camera model was set up and stereo matching applied. As a result, two DEMs over urban areas were produced. Within a DEM from EpiMatch small houses appear as small "cloudy" patches and large apartment and industrial buildings are visually identifiable. Within the DEM from graph-cut we could achieve better height information on building boundaries. The results show that both algorithms can generate DEMs from IKONOS images although more research is required on handling height discontinuities (for "EpiMatch") and on faster computation (for "Graph-cut").

  • PDF

SGM Performance Improvement of Stereo Satellite Image with Classified Image and Edge Image (분류영상과 에지영상을 이용한 입체 위성영상의 SGM 성능개선)

  • Lee, Hyoseong;Park, Byungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2020
  • SGM (Semi Global Matching) can be used to find all the conjugate points between stereo images. Therefore, it enables high-density DSM (Digital Surface Model) production from high-resolution satellite images. However, water, shadows, and occlusion areas cause mismatching of the surrounding points in this method. Particularly, in buildings with large-parallax and elongated-shapes such as a Korean style apartment, it is difficult to reconstruct the 3D building even if the SGM method is applied to a high-resolution 50cm satellite image. This study proposed and performed the SGM technique with a classified image and an edge image from the IKONOS-2 satellite stereo-image with a 1m resolution to produce DSM. It was compared with the DSMs from the general SGM and the high-density ABM (Area Based Matching) matching of ERDAS software. The results of the apartment DSM by the proposed method were the best in the test area. As a result, despite the image having a resolution of 1m, the outline of the building DSM could be expressed more clearly than the existing method.

A Study on Winter-Covered Optical Satellite Imagery for Post-Eire Forest Monitoring

  • Kim, Choen;Park, Seung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.274-274
    • /
    • 2002
  • Damage to forest trees, caused by wildfire, changes their spectral reflectance signature. This factor led to the initiation of a research project at the Remote Sensing & GIS Laboratory, Kookmin University, to determine if multispectral data acquired by IKONOS could provide fire scar and bum severity mapping. This paper will present detail mapping of burned areas in the eastern coast of Korea with IKONOS imagery. In addition, a single post-burn Landsat-7 ETM+ data was used to compare with IKONOS, the study area. Burn severity map based on IKONOS image was found to be affected by strong topographic illumination effects in the mountain forest. But it has better the delineation of the bum-scarred area. In this study the NDVI was analyzed for geometric illumination conditions influenced by topography(slop, aspect and elevation) and shadow(solar elevation and azimuth angle).

  • PDF

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

A Study on Efficient Topography Classification of High Resolution Satelite Image (고해상도 위성영상의 효율적 지형분류기법 연구)

  • Lim, Hye-Young;Kim, Hwang-Soo;Choi, Joon-Seog;Song, Seung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.33-40
    • /
    • 2005
  • The aim of remotely sensed data classification is to produce the best accuracy map of the earth surface assigning each pixel to its appropriate category of the real-world. The classification of satellite multi-spectral image data has become tool for generating ground cover map. Many classification methods exist. In this study, MLC(Maximum Likelihood Classification), ANN(Artificial neural network), SVM(Support Vector Machine), Naive Bayes classifier algorithms are compared using IKONOS image of the part of Dalsung Gun, Daegu area. Two preprocessing methods are performed-PCA(Principal component analysis), ICA(Independent Component Analysis). Boosting algorithms also performed. By the combination of appropriate feature selection pre-processing and classifier, the best results were obtained.

  • PDF

DEM Generation from IKONOS Imagery by Using Parallel Projection Model (평행투영모형에 의한 IKONOS 위성영상의 수치고도모형 생성)

  • Kim, Eui-Myoung;Kim, Seong-Sam;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.55-61
    • /
    • 2005
  • Digital Elevation Model (DEM) generation from remotely sensed imagery is crucial for a variety of mapping applications such as ortho-photo generation, city modeling. High resolution imaging satellites such as SPOT-5, IKONOS, QUICK-BIRD, ORBVIEW constitute an excellent source for efficient and economic generation of DEM data. However, prerequisite knowledge in the areas of sensor modeling, epipolar resampling, and image matching is required to generate DEM from these high resolution satellite imagery. From the above requirements, epipolar resampling emerges as the most important factors. Research attempts in this area are still in high demand and short supply. Another cause that adds to the complication of the problem is that most studies of DEM generation from IKONOS scenes have been based on rational function model. In this paper, we proposed a new methodology for DEM generation from satellite scenes using parallel projection model which is sensor independent, makes it possible for sensor modeling and epipolar resampling by only few control points. The performance and feasibility of the developed methodology is evaluated through real dataset captured by IKONOS.

  • PDF