DOI QR코드

DOI QR Code

SGM Performance Improvement of Stereo Satellite Image with Classified Image and Edge Image

분류영상과 에지영상을 이용한 입체 위성영상의 SGM 성능개선

  • Lee, Hyoseong (Dept. of Civil Engineering, Sunchon National University) ;
  • Park, Byungwook (School of Civil & Environmental Engineering, Hankyong National University)
  • Received : 2020.11.23
  • Accepted : 2020.12.06
  • Published : 2020.12.31

Abstract

SGM (Semi Global Matching) can be used to find all the conjugate points between stereo images. Therefore, it enables high-density DSM (Digital Surface Model) production from high-resolution satellite images. However, water, shadows, and occlusion areas cause mismatching of the surrounding points in this method. Particularly, in buildings with large-parallax and elongated-shapes such as a Korean style apartment, it is difficult to reconstruct the 3D building even if the SGM method is applied to a high-resolution 50cm satellite image. This study proposed and performed the SGM technique with a classified image and an edge image from the IKONOS-2 satellite stereo-image with a 1m resolution to produce DSM. It was compared with the DSMs from the general SGM and the high-density ABM (Area Based Matching) matching of ERDAS software. The results of the apartment DSM by the proposed method were the best in the test area. As a result, despite the image having a resolution of 1m, the outline of the building DSM could be expressed more clearly than the existing method.

SGM (Semi Global Matching)은 입체영상 간 모든점의 매칭점을 찾기 때문에 고해상도 위성영상으로부터 고밀도 수치표면모델 제작이 가능하다. 그러나 물과 그림자, 폐색 지역이 포함되면 그 주변지점에도 오매칭의 영향을 준다. 특히 우리나라 아파트 구조물과 같이 시차가 크고 길쭉한 형태의 건물에서는 50cm급 고해상도 위성영상에 SGM 방법을 적용하더라도 건물의 3차원 복원은 어렵다. 따라서 본 연구는 1m급 해상도의 IKONOS-2 입체 위성 영상으로부터 분류영상과 에지영상을 이용한 SGM 기법을 제안, 적용하여 수치표면모델을 제작하고 일반 SGM 방법, ERDAS 소프트웨어의 고밀도 ABM (Area Based Matching) 매칭으로 제작한 수치표면모델과 비교하였다. 실험 대상지역에는 제안방법의 아파트 수치표면모델 결과가 가장 우수하였다. 결과적으로, 해상도가 1m 임에도 불구하고 제안방법을 이용하여 건물 수치표면모델의 윤곽선을 기존 방법에 비해 더욱 더 선명하게 표현할 수 있었다.

Keywords

References

  1. D'Angelo, P. and Reinartz, P. (2011), Semiglobal matching results on the ISPRS stereo matching benchmark, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 14-17 June, Hannover, Germany, Vol. XXXVIII-4/W19, pp. 79-84.
  2. Dall'Asta, E. and Roncella, R. (2014), A comparision of semiglobal and local dense matching algorithms for surface reconstruction, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 23-25 June, Riva del Garda, Italy, Vol. XL-5, pp. 187-194.
  3. Gruen, A., Zhang, L. and Eisenbeiss, H. (2005), 3D precision processing of high satellite imagery, ASPRS 2005 Annual Conference, ASPRS, Baltimore, Maryland, USA, CD-ROM.
  4. Hirschmuller, H. (2008), Stereo processing by semiglobal matching and mutual information, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 30, No. 2, pp. 328-341. https://doi.org/10.1109/TPAMI.2007.1166
  5. Jang, Y.J., Lee, J.W, and Oh, J.H. (2019), Topographic information extraction from KOMPSAT satellite stereo data using SGM, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 37, No. 5, pp. 315-322. https://doi.org/10.7848/KSGPC.2019.37.5.315
  6. Kornus, W., Alamus, R., Ruiz, J. and Talaya, J. (2006), DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 147-159. https://doi.org/10.1016/j.isprsjprs.2005.12.004
  7. Kwon, W. (2019), DSM generation and accuracy comparison using stereo matching based on image segmentation, Korean Journal of Remote Sensing, Vol. 35, No. 3, 2019, pp. 401-413. https://doi.org/10.7780/KJRS.2019.35.3.5
  8. Lee, H., Park, S., Kwon, W. and Han, D. (2019), Comparison of SGM Cost for DSM Generation Using Satellite Images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 37, No. 6, pp. 473-479. https://doi.org/10.7848/KSGPC.2019.37.6.473
  9. LuxCarta (2020), Operational pipeline for large-scale 3D reconstruction of buildings from satellite images, luxcarta.com, https://www.luxcarta.com/2020/10/15/pipeline-3d-reconstruction-buildings-satellite-images/(last date accessed: 27 November, 2020).
  10. Nemmaoui, A., Aguilar, F.J., Aguilar, M.A., Qin, R. (2019), DSM and DTM generation from VHR satellite stereo imagery over plastic covered greenhouse areas, Computers and Electronics in Agriculture, https://doi.org/10.1016/j.compag.2019.104903(last date accessed: 05 September 2020).
  11. Oh, J.H., Lee, W.H., Toth, C.K., Grejner-Brzezinska, D.A., and Lee, C.N. (2010), A piecewise approach to epipolar resampling of pushbroom satellite images based on RPC, Photogrammetric Engineering & Remote Sensing, Vol. 76, No. 12, pp. 1353-1363. https://doi.org/10.14358/PERS.76.12.1353
  12. Reinartz, P., Muller, R., Lehner, M. and Schroeder, M. (2006), Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 160-169. https://doi.org/10.1016/j.isprsjprs.2005.12.003
  13. Silveira, M.T., Feitosa, R.Q., Jacobsen, K.., Brito, J.L.N.S. and Heckel, Y. (2008), A Hybrid method for stereo image matching, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, Vol. XXXVII, Part B1, pp. 895-900.
  14. Toutin, T. (2006), Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 170-181. https://doi.org/10.1016/j.isprsjprs.2006.02.003
  15. Zhang, L. and Gruen, A. (2006), Multi-image matching for DSM generation from IKONOS imagery, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 195-211. https://doi.org/10.1016/j.isprsjprs.2006.01.001