• Title/Summary/Keyword: IGZO thin film

Search Result 191, Processing Time 0.05 seconds

Analysis and Improvement of Reliability in IGZO TFT for Next Generation Display

  • Fujii, Mami;Fuyuki, Takashi;Jung, Ji-Sim;Kwon, Jang-Yeon;Uraoka, Yukiharu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.326-329
    • /
    • 2009
  • We investigated the degradation of $In_2O_3-Ga_2O_3$-ZnO (IGZO) thin-film transistors (TFTs), which is promising device for driving circuits of nextgeneration displays. We performed the electronic stress test by applying gate and drain voltage. We discussed the degradation mechanism by thermal analysis and device simulation.

  • PDF

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-film Transistors by AZO/Ag/AZO Multilayer Transparent Electrode

  • No, Yeong-Su;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Jo, Se-Hui;Kim, Tae-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.443-443
    • /
    • 2012
  • We fabricated a-IGZO TFT with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. Enhanced electrical device performance of a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = = 400/50 mm) was achieved with a subs-threshold swing of 3.78 V/dec, a minimum off-current of 10-12 A, a threshold voltage of 1.80 V, a field effect mobility of 10.86 cm2/Vs, and an on/off ration of 9x109. It demonstrated the potential application of the AZO/Ag/AZO film as a promising S/D contact material for the fabrication of the high performance TFTs.

  • PDF

열처리에 따른 a-IGZO 소자의 전기적 특성과 조성 분포

  • Gang, Ji-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • Hydrogenated amorphous Si (a-Si:H), low temperature poly Si (LTPS) 등 기존 thin film transistors (TFTs)에 사용되던 채널 물질을 대체할 재료로써 다양한 연구가 진행되고 있는 amorphous indium-gallium-zinc-oxide (a-IGZO)는 TFT에 적용하였을 때 뛰어난 전기적 특성과 재연성을 나타낼 뿐만 아니라 넓은 밴드갭을 가져 투명소자로도 응용이 가능하다. 본 연구에서는 a-IGZO의 열처리에 따른 소자의 전기적 특성과 조성 분포의 관계를 확인하기 위해 다음과 같이 실험을 진행하였다. Si/SiO2 기판 위에 DC sputter를 이용하여 IGZO를 증착하고 $350^{\circ}C$에서 열처리를 한 후 evaporator로 Al 전극을 형성시켰다. 이 때 전기적 특성의 변화를 비교하기 위해 열처리 한 샘플과 열처리 하지 않은 샘플에 대해 I-V 특성을 측정하였고, 채널 내부의 조성 분포 변화를 transmission electron microscopy (TEM)의 energy dispersive spectrometer (EDS)를 이용하여 관찰하였다. 그 결과 열처리 된 a-IGZO 채널 층의 산소 비율이 감소하였으며 전체적인 조성이 고르게 분포 되었고 전기적 특성은 향상되었다.

  • PDF

TFTs characteristics of amorphous IGZO thin film fabricated with different RF Power (다양한 RF Power로 제작한 비정질 IGZO TFTs의 특성 연구)

  • Jeong, Yeon-Hu;Jo, Gwang-Min;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.254-255
    • /
    • 2014
  • RF magnetron sputtering법으로 증착한 비정질 IGZO 박막과 이를 Active layer로 이용한 TFT의 Transfer 특성에 대한 RF Power의 영향에 대해 연구하였다. Carrier concentration은 Sputtering 공정 중에 산소 분압으로 조절하였다. RF Power가 75에서 150W로 증가할수록 IGZO 박막의 Roughness는 12.2에서 $6.5{\AA}$ 감소하였고 Density는 6.0에서 $6.1g/cm^3$로 증가하였다. 또한, 모든 IGZO 박막은 가시광 영역에서 85% 이상의 투과율을 보였고 Optical band gap은 미세하게 감소하였다. RF Power가 증가할수록 a-IGZO TFT의 Threshold voltage는 0.9에서 7V로 증가하였고, Subthreshold slope은 0.3에서 0.8 V/decade로 증가하였다. 하지만 Mobility는 11에서 $19cm^2/V{\cdot}s$로 증가하였다.

  • PDF

Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Nomura, Kenji;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.21-29
    • /
    • 2008
  • We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.

IGZO TFT의 캐리어 이동 경로 변화에 따른 특성 향상

  • Gang, Geum-Sik;Choe, Hyeok-U;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.479-479
    • /
    • 2013
  • 산화물 반도체 물질을 이용한 Thin film transistor (TFT) 소자는 기존의 비정질 Si TFT와 저온 다결정 Si TFT 소자가 가지지 못하는 장점들이 보고되면서 차세대 디스플레이용 소자로 주목을 받고 있다. 그 중 TFT의 채널 물질로 a-IGZO가 많이 활용되고 있다. a-IGZO의 활용이 더 많아지고 있는 이유는 저온공정이 가능하고 3.2 eV의 큰 밴드갭으로 투명하며 높은 균일도, 캐리어 이동도를 모두 가지고 있기 때문이다. 본 연구에서는 산화물 물질인 IGZO를 채널 층으로 사용한 TFT소자에서 IGZO의 캐리어인 전자의 이동경로를 금속을 통하여 이동하게 함으로써 전기적 특성의 변화를 관찰하였다. TFT는 다수 캐리어가 게이트 전압에 의하여 박막 아래쪽에 채널을 형성하여 동작한다. 이 때 IGZO박막과 SiO2 사이의 Al을 증착하여 다수 캐리어인 전자의 이동도를 향상시켰다. 전극으로 사용되어지는 Al은 IGZO박막과 ohmic contant이기 때문에 전자의 이동이 어렵지 않기 때문이다. 소자 제작은 게이트로 도핑된 P형 기판을 사용하였고 게이트 절연체로 SiO2 200 nm를 증착하였다. 채널층로 IGZO를 증착하기 전에 게이트 절연체 위에 evaporation으로 Al을 20 nm를 증착하였다. 이때 mask는 $2.4{\times}10^{-4}cm^2$ 크기의 dot 형태를 사용하였다. Al을 증착 후 RF sputtering으로 IGZO를 30 nm 증착하였으며 $350^{\circ}C$에서 90 min 동안 열처리하였다. 소스와 드레인은 evaporation으로 Al을 100 nm 증착하였다. HB 4145B 측정기로 I-V 그래프를 통하여 전기적 특성의 변화를 관찰하였다.

  • PDF

Electrical and Optical Properties of In-Ga-Zn-O Thin Films for TTFTs

  • Kim, Ji-Hong;Lee, Won-Yong;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.309-309
    • /
    • 2009
  • In-Ga-Zn-O (IGZO) has drawn much attention as a compatible material for transparent thin film transistors (TTFT) channel layer due to its high mobility and optical transparency at low processing temperatures. In this work, we investigated the effect of oxygen ambient on structural, electrical and optical properties of amorphous In-Ga-Zn-O (IGZO) thin films by using pulsed laser deposition (PLD). The films were deposited at various oxygen pressures and the structural, electrical and optical properties were investigated. X-ray diffraction (XRD) analysis showed that amorphous IGZO films were grown at all oxygen pressures. The surface morphology and optical properties with various oxygen pressures were studied by field emission scanning electron microscopy (FE-SEM) and UV-VIS spectroscopy, respectively. The grain boundary was observed more apparently and the calculated optical band gap became larger as oxygen pressure increased. To examine the electrical properties, Hall-effect measurements were carried out. The films showed high mobility.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF