• Title/Summary/Keyword: IGRT(Image Guided Radiation Therapy)

Search Result 38, Processing Time 0.023 seconds

Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT (Cone-Beam CT에서 물질 및 호흡 변화가 영상에 미치는 영향에 대한 고찰)

  • Na, Jun-Young;Kim, Jung-Mi;Kim, Dae-Sup;Kang, Tae-Young;Baek, Geum-Mun;Kwon, Gyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • Purpose: Image Guided Radiation Therapy (IGRT) has been carried out using On-Board Imager system (OBI) in Asan Medical Center. For this reason, This study was to analyze and evaluate the impact on Cone-Beam CT according to variation of material and respiration. Materials and Methods: This study was to acquire and analyze Cone-Beam CT three times for two material: Cylider acryl (lung equvalent material, diameter 3 cm), Fiducial Marker (using clinic) under Motion Phantom able to adjust respiration pattern randomly was varying period, amplitude and baseline vis-a-vis reference respiration pattern. Results: First, According to a kind of material, when being showed 100% in the acryl and 120% in the Fiducial Marker under the condition of same movement of the motion phantom. Second, According to the respiratory alteration, when being showed 1.13 in the baseline shift 1.8 mm and 1.27 in the baseline shift 3.3 mm for acryl. when being showed 1.01 in 1 sec of period and 1.045 in 2.5 sec of period for acryl. When being showed 0.86 in 0.7 times the standard of amplitude and 1.43 in 1.7 times the standard of amplitude for acryl. when being showed 1.18 in the baseline shift 1.8 mm and 1.34 in the baseline shift 3.3 mm for Fiducial Marker. when being showed 1.0 in 1 sec of period and 1.0 in 2.5 sec of period for Fiducial Marker. When being showed 0.99 in 0.7 times the standard of amplitude and 1.66 in 1.7 times the standard of amplitude for Fiducial Marker. Conclusion: The effect of image size of CBCT was 20% in the case of Fiducial marker. The impact of changes in breathing pattern was minimum 13% - maximum 43% for Arcyl, min. 18% - max. 66% for Fiducial marker. This difference makes serious uncertainty. So, Must be stabilized breathing of patient before acquiring CBCT. also must be monitored breathing of patient in the middle of acquire. If you observe considerable change of breathing when acquiring CBCT. After Image Guided, must be need to check treatment site using fluoroscopy. If a change is too big, re-acquiring CBCT.

  • PDF

Verify Image-Guided Shifts for 6DoF Couch using Yonsei Cancer Center QA Set (Yonsei Cancer Center QA Set을 이용한 6DoF Couch의 이동 정확성 검증)

  • Jung, Dongmin;Park, Hyokuk;Yoon, Jongwon;Lee, Sangkyu;Kim, Jooho;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.7-18
    • /
    • 2017
  • Purpose: A QA Set was established to verify the movement accuracy of image-guided 6DoF Couch and to evaluate its usefulness. Materials and Methods: Two sets of linear accelerators equipped with 6DoF Couch and CBCT were used. Using the established QA Set, each CBCT image was obtained over 15 times through the Penta-Guide Phantom installed with off-set shift values along six translational (Translation; TX, TY, TZ) and rotational (Rotation, Pitch; RX, Roll; RY, Yaw; RZ) directions. Using this method, we compared the reference image and the registration image, and we analyzed the error calculated by measuring the positional accuracy of the modified 6DoF Couch. Results: The Air Cavity corresponding to the Pixel of the reference image and the registration image were all contained between 30 and 66, and the revealing high registration accuracy. Error between the modified off-set value of 6DoF Couch and the measured value along translational directions were $0.25{\pm}0.18mm$ in the TX direction, $0.25{\pm}0.25mm$ in the TY direction, and $0.36{\pm}0.2mm$ in the TZ direction. Misalignments along the rotational axis were $0.18{\pm}0.08^{\circ}$ in the RX direction, $0.26{\pm}0.09^{\circ}$ in the RY direction, and $0.11{\pm}0.08^{\circ}$ in the RZ direction, it was corrected precisely for any value. Conclusion: Using the YCC QA Set, we were able to verify the error of 6DoF Couch along both the translational and rotational directions in a very simple method. This system would be useful in performing Daily IGRT QA of 6DoF Couch.

  • PDF

Evaluation of the Interfraction Setup Errors using On Board- Imager (OBI) (On board imager를 이용한 치료간 환자 셋업오차 평가)

  • Jang, Eun-Sung;Baek, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2009
  • When using Image Guided Radiation Therapy, the patient is placed using skin marker first and after confirming anatomical location using OBI, the couch is moved to correct the set up. Evaluation for the error made at that moment was done. Through comparing $0^{\circ}$ and $270^{\circ}$ direction DRR image and OBI image with 2D-2D matching when therapy planning, comparison between patient's therapy plan setup and actual treatment setup was made to observe the error. Treatment confirmation on important organs such as head, neck and spinal cord was done every time through OBI setup and other organs such as chest, abdomen and pelvis was done 2 ~ 3 times a week. But corrections were all recorded on OIS so that evaluation on accuracy could be made through using skin index which was divided into head, neck, chest and abdomen-pelvis on 160 patients. Average setup error for head and neck patient on each AP, SI, RL direction was $0.2{\pm}0.2cm$, $-0.1{\pm}0.1cm$, $-0.2{\pm}0.0cm$, chest patient was $-0.5{\pm}0.1cm$, $0.3{\pm}0.3cm$, $0.4{\pm}0.2cm$, and abdomen was $0.4{\pm}0.4cm$, $-0.5{\pm}0.1cm$, $-0.4{\pm}0.1cm$. In case of pelvis, it was $0.5{\pm}0.3cm$, $0.8{\pm}0.4cm$, $-0.3{\pm}0.2cm$. In rigid body parts such as head and neck showed lesser setup error compared to chest and abdomen. Error was greater on chest in horizontal axis and in AP direction, abdomen-pelvis showed greater error. Error was greater on chest in horizontal axis because of the curve in patient's body when the setup is made. Error was greater on abdomen in AP direction because of the change in front and back location due to breathing of patient. There was no systematic error on patient setup system. Since OBI confirms the anatomical location, when focus is located on the skin, it is more precise to use skin marker to setup. When compared with 3D-3D conformation, although 2D-2D conformation can't find out the rolling error, it has lesser radiation exposure and shorter setup confirmation time. Therefore, on actual clinic, 2D-2D conformation is more appropriate.

  • PDF

Usefulness of Customized Cervical Spine Immobilizer in Head & Neck Image-Guided Radiation Therapy with Tomotherapy® (토모테라피를 이용한 두경부암 영상유도 방사선 치료 시 개인별 경추고정용구의 유용성 평가)

  • Jin, Sung Eun;Chang, Se Wuk;Choi, Jung Hoan;Kim, Min Joo;Ahn, Seung Kwon;Lee, Sang Kyu;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.65-71
    • /
    • 2018
  • Purpose : Standardized pillow may not support patient's individual cervical spine thoroughly when head and neck radiation therapy with $Tomotherapy^{(R)}$. Therefore, the purpose of this study was to make a comparative analysis for the difference of using standardized pillow only and using customized cervical spine immobilizer with standardized pillow. Materials and Methos : The head and neck cancer patients who are treated image-guided radiation therapy(IGRT) with $Tomotherapy^{(R)}$ were divided into two groups, 20 patients using standardized pillow only, and 20 patients using customized cervical spine immobilizer with standardized pillow. We achieved 20 mega-voltage computed tomography(MVCT) image per patient, compared curvature of the cervical spine in MVCT with curvature of the cervical spine in CT-simulation. Results : Results of comparative analysis were curvature consistency 95.9 %, maximum error of distance 41.9 mm, average distance error per fractionation 19.4 mm, average standard deviation 1.34 mm in case of using standardized pillow only, curvature consistency 98.9 %, maximum error of distance 12.9 mm, average distance error per fractionation 5.8 mm, average standard deviation 0.59 mm in case of using customized cervical spine immobilizer with standardized pillow. Conclusion : Using customized cervical spine immobilizer shows higher reproducibility and low distance error, therefore customized cervical spine immobilizer could be useful for head and neck cancer patients who need radiation therapy.

  • PDF

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

A Study on the Reduction of Organ Motion from Respiration (호흡 운동에 의한 내부 장기의 움직임 감소에 관한 연구)

  • Kim Jae-Gyoun;Lee Dong-Han;Lee Dong-Hoon;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Oh Won-Yong;Ji Young-Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • To deal with tumor motion from respiration is one of the important issues for the advanced treatment techniques, such as the intensity modulated radiation therapy (IMRT), the image guided radiation therapy (IGRT), the three dimensional conformal therapy (3D-CRT) and the Cyber Knife. Studies including the active breath control (ABC) and the gated radiation therapy have been reported. Authors have developed the device for reducing the respiration effects and the diaphragm motions with this device were observed to determined the effectiveness of the device. The device consists of four belts to immobilize diaphragm motion and the vacuum cushion. Diaphragm motions without and with device were monitored fluoroscopically. Diaphragm motion ranges were found to be 1.14 ~ 3.14 cm (average 2.14 cm) without the device and 0.72~1.95 cm (average 1.16 cm) with the device. The motion ranges were decreased 20 ~ 68.4% (average 44.9%.) However, the respiration cycle was increased from 4.4 seconds to 3.7 seconds. The CTV-PTV margin could be decreased significantly with the device developed in this study, which may be applied to the treatments of the tumor sited diaphragm region.

  • PDF

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF