• Title/Summary/Keyword: IGC code

Search Result 10, Processing Time 0.023 seconds

Consideration for IMO Type C Independent Tank Rule Scantling Process and Evaluation Methods (IMO C형 독립탱크의 설계치수 계산과정 및 평가방법에 대한 고찰)

  • Heo, Kwang-hyun;Kang, Won-sik;Park, Bong-qyun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.93-104
    • /
    • 2017
  • IMO type C independent tank is one of the cargo containment system specified on IGC code. It is normally adopted for small and medium size liquefied gas carrier's cargo containment system and it can be applied to fuel tank of LNG fueled vessel. This study focuses on rule scantling process and evaluation methods in early design stage of type C independent tank. Actual design results of 22K LPG/Ammonia/VCM carrier's No.2 cargo tank are demonstrated. This paper presents the calculation methods of design acceleration and liquid height for internal design pressure as defined on IGC code. And this paper shows the applied results of classification rules about shell thickness requirement and buckling strength. Additionally this paper deals with evaluation methods of structural strength and cumulative fatigue damage using FE analysis.

  • PDF

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

Gas Fuelled Ship - Current Status of IGF Code Development at IMO (Gas Fueled Ship - IMO의 IGF Code 개발 동향)

  • Kang, Jae-Sung;Kang, Ho-Keun;Kim, Ki-Pyoung;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.3-6
    • /
    • 2011
  • The utilization of gas as ship fuel requires a new set of regulations by IMO and society of classification. Maritime Safety Committee(MSC) and the subcommittee Bulk-Liquids and Gases(BLG) in IMO developed "Interim Guidelines on Safety for Natural Gas-fueled Engine Installation in Ships(Res.MSC.285(86))" for the use of natural gas in internal combustion engine. According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, several parts of ships should follow safety criteria in terms of Fuel bunkering, Gas safe Machinery spaces, Gas Fuel Storage and etc. In this thesis, details of the IGF code shall be described and development of the IGF code in IMO shall be illustrated.

  • PDF

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF

Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system (Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석)

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.