• Title/Summary/Keyword: IF steel

Search Result 885, Processing Time 0.026 seconds

THE EFFECT OF NiTi ROTARY INSTRUMENTATION ON THE CHANGE OF APICAL ROOT CANAL CURVATURE (NiTi Rotary Instrumentation이 근관만곡도 변화에 미치는 영향)

  • Lim, Hyoung-Tae;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.257-268
    • /
    • 1998
  • During cleaning and shaping of narrow and curved canals, it is very difficult or nearly impossible to maintain the original canal shape. Procedural accidents such as, ledge, zipping, perforation, and instrument breakage are frequently occurred and even may lead to failure of endodontic therapy. To prevent these kinds of accidents, various instrumentation techniques and materials have been introduced. Recently some nickel titanium (NiTi) files are introduced and it is reported that These NiTi files created rounder preparations with less transportation than conventional instruments in curved canals. This study compared the change of the canal curvature and procedural accidents after instrumentation produced by stainless steel K-flexo file, and NiTi rotary files (Profile 29 and Quantec 2000). Thirty narrow and curved canals (25-45 degree) of extracted human molars were randomly divided into three groups. In group 1, canals were instrumented using a step-back and watch-winding/pull motion with K-flexo files. In group 2, canals were prepared with Profile 29. Group 3, canals were prepared with Quantec 2000 files. Before and after preparation of canals, periapical radiographs were taken and scanned. The change of canal curvature were measured using Photoshop 4.0 program and the incidence of procedural accidents were also evaluated. The results were as follows: 1. All group showed some loss of canal curvature after instrumentation. 2. Average loss of canal curvature was $6.70{\pm}5.31$ degree for group 1, $3.80{\pm}2.57$ degree for group 2, and $5.40{\pm}4.83$ degree for group 3. All group There was significant change in curvature between before and after instrumentation (p<0.05). But there was no statistical difference amoung 3 groups. 3. In group I, there were no procedural accidents, such as ledging, perforation, or instrument fracture. In group 2, two cases of ledge and one case of instrument fracture were produced Goup 3, each one case of ledge, perforation and instrument fracture were occurred. Whthin the limits of above results, It seems that NiTi rotary instrumentation is not All Mighty and if we use uncarefully, it is more dangerous to produce some procedural accidents than conventional hand files. But more studies should be taken to evaluate the exact effects of NiTi rotary instrumentations.

  • PDF

Evaluation of tensile strength according to welding variables in GMA welding of SAPH440 (SAPH440재료의 GMA용접시 용접변수에 따른 인장 강도 특성 평가)

  • Kim, Won-Seop;Lee, Jong-Hun;LeeSeo, Han-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.133-138
    • /
    • 2019
  • This study evaluated the tensile properties of SAPH440, a hot-rolled steel for automotive structural applications, based on GMAW lap welding, the welding current, the welding voltage, and the feed rate. Tensile tests were performed according to the joint parameters of the GMAW process, for which specimens were fabricated according to KS B ISO 9018 by lap welding. The bead appearance was observed in each condition, and the weldability was evaluated by the tensile test. Higher the welding current resulted in a deeper weld, but the tensile strength was not significantly different from when the parameter was fixed due to the fracture of the base material. When the current was higher than the voltage, as in the case of a welding current of 200 A and welding voltage of 17 V, a large amount of spatter is generated, the welding is unstable, and the welded part breaks. Higher the voltage resulted in the bead not causing defects in general, and it also affected the weldability. If the current and voltage were too low, the welding was not performed normally, and the tensile strength could not be measured. However, as the current increased, the increase of the voltage and the feed rate did not affect the tensile strength.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.

A Development of Representative Condition Evaluation Standard for LNG Storage Tank Structures (LNG 저장탱크 구조물의 종합적 상태평가기준 개발)

  • Kim, Jung-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.44-51
    • /
    • 2018
  • As the LNG storage tank is aged, if there is a crack in the outer wall concrete or corrosion of the reinforcing steel, there is a risk of a major accident such as collapse of the structure depending on the type and degree of damage. Since 2014, LNG storage tanks have undergone precise safety diagnosis and safety inspection has been carried out. The condition evaluation criteria for each component have been revised and applied in January 2016. The condition evaluation standard is to evaluate the status of storage tanks based on the appearance survey and material test results of LNG storage tanks and it is important for maintenance. In addition, the representative condition evaluation standard that shows the comprehensive state of each LNG storage tank is important in maintenance, but the related standard for LNG storage tank outer concrete is not available in Korea and abroad, and development of the condition evaluation standard is necessary. In this paper, we examined the structural characteristics of LNG storage tanks, analyzed the status of the condition evaluation criteria for each member, and developed a comprehensive status rating system by weighting the members. We used the AHP(Analytic Hierarchy Process) technique and developed a representative conditon evaluation criteria through surveys of professional organizations.

Low-cost Impedance Technique for Structural Health Monitoring (임피던스 기반 저비용 구조물 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.265-271
    • /
    • 2018
  • This paper presents a method for detecting damage to a structure at low cost using its impedance. The impedance technique is a typical method to detect local damage for structural health monitoring. This is a common technique for estimating damage by monitoring the electro-mechanical admittance signal of the structure. To apply this technique, an expensive impedance analyzer is generally used. On the other hand, it is necessary to develop a low-cost variant to effectively disseminate the technique. In this study, a method based on the transfer impedance using a function generator and digital multimeter, which are generally used in the laboratory instead of an impedance analyzer, was developed. That is, this technique estimates the damage by comparing the damage index using the amplitude ratio of the output voltage measured in the healthy and damaged state. A transfer impedance test was carried out on a steel specimen. By comparing the damage index, the presence of damage could be assessed reasonably. This study is a basic investigation of an impedance-based low-cost damage detection method that can be used effectively for structural health monitoring if supplemented with future research to estimate the damage location and severity.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

Analysis of Important of Port Selection Factors to Attract Shippers for Mokpo New Port (목포 신외항 선·화주 유치를 위한 항만선택 요인의 중요도 분석)

  • Son, Yoomi;Kim, Jihyun;Lee, Kyongseok;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.199-214
    • /
    • 2022
  • A relative important analysis was conducted to determine what factors are required for port selection in Mokpo New Port and what needs to be addressed first in order to expand automobile and steel cargo handling. The port selection factors of Mokpo New Port were classified into 4 major and 13 intermediate categories, and AHP analysis was used. As a result, items such as 'port facilities', 'accessibility to international ports', 'port facility usage fees', and 'connectivity with neighboring cities/ports' were evaluated as important. The respondent groups were divided into shipowner and shipper, port operator and stevedore, and public official, and an analysis of variance (ANOVA) was conducted to verify if there was a difference in perception between the groups. As a result, shipowner and shipper, port operator and stevedore were similar, but there was a difference from public official group. Shipowner and shipper, port operator and stevedore with similar response characteristics were classified into the 'port practitioner' group, and public official were classified into the 'port policy maker' group, and the difference in perception between the group was tested. Therefore, there were differences in some major category items, and even in the intermediate category items such as 'possession of adjacent hinterland industrial complex', 'cargo equipment', '24-hour port operation', 'inland transportation cost', 'accessibility to international ports', 'marketing and incentives' with statistical. In other words, the 'port practitioner' group evaluated items that can increase cargo creation and handling productivity as important whereas the 'port policy maker' group considers port development and policies such as port infrastructure, connectivity with other ports, and incentive support items are more important.

Tunnel pillar reinforcement effect using PC stranded wire and groutings (PC강연선 및 그라우팅을 이용한 터널 필라부 보강효과)

  • Yeon-Deok Kim;Soo-Jin Lee;Pyung-Woo Lee;Hong-Su Yun;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.43-63
    • /
    • 2023
  • With the concentration of the population in the city center and the saturation of the structures on the ground, the development of the underground structures becomes important and the construction of an adjoining tunnel that can reduce the overall problems is respected. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy and workability of the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability and economic feasibility, theoretical and numerical analysis of the actual behavior mechanism are conducted. Numerical analysis is divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), pillar part tie bolt reinforcement (Case 2), pillar part non-reinforcement (Case 3) under the same ground conditions, and the maximum value of the celling displacement, internal displacement, and member force, the stability was confirmed. Through numerical analysis, it was confirmed that Case 1 which reinforced the PC stranded wire, was the best construction method and if it is verified and supplemented through field experiments later, it will be possible to derive superior results in terms of displacement control and member force than the currently applied reinforcement method was judged.

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.

Development of Individual Temporary Equipment Material/Quality/Delivery Management Standards(Guide) for Temporary Equipment Rental Company (가설기자재 임대업체를 위한 개별 가설기자재 자재/품질/납품관리 기준(Guide) 개발)

  • Lee, Junho;Kim, Junsang;Yoou, Geonhee;Cho, Sehyun;Kim, JungYeol;Kim, Youngsuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.62-72
    • /
    • 2024
  • Due to the distribution structure of domestic temporary equipment, quality control of temporary equipment is essential because more than 80% of temporary equipment is repeated and reused. Due to this importance, the Ministry of Land, Infrastructure and Transport has proposed quality management standards for temporary equipment for 10types of temporary equipments, including steel pipe support, but the overall quality of temporary eqipment cannot be confirmed because the quality is managed through sampling quality tests. In addition, although quality control standards exist for temporary material rental company, practical utilization was investigated and analyzed to be very low as they are mainly presented based on qualitative inspection standards by visual inspection. Therefore, the purpose of this study is to develop individual temporary material/quality/delivery management standards (Guides) for temporary equipment rental company to preemptively secure the quality of temporary equipment before bringing them into the construction site. If the standards developed through this study are applied to domestic temporary equipment rental companies, it is expected that high-quality temporary equipment with secured quality will be brought into the construction site as the quality of temporary equipment quality of domestic medium and small temporary equipment rental companies is improved safety accidents related to temporary structures.