• 제목/요약/키워드: IF Mixer

Search Result 191, Processing Time 0.024 seconds

Design of Double Balanced MMIC Mixer for Ku-band (Ku-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • Ryu Keun-Kwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.97-101
    • /
    • 2003
  • A MMIC (monolithic microwave integrated circuit) mixer chip using the Schottky diode of an InGahs/CaAs p-HEMT process has been developed for the receiver down converter of Ku-band. A different approach to the MMIC mixer structure is applied for reducing the chip size by the exchange of ports between If and LO. This MMIC covers with RF (14.0 - 14.5 GHz) and If (12.252 - 12.752 GHz). According to the on-wafer measurement, the miniature (3.3X3.0 m) MMIC mixer demonstrates conversion loss below 9.8 dB, RF-to-IF isolation above 23 dB, LO-to-IF isolation above 38 dB, respectively.

  • PDF

Design of Double-Conversion Down Mixer Using Single Half-LO Frequency at 2.3 GHz (2.3 GHz 대역에서 단일 Half-LO 주파수를 이용한 Double-Conversion Down Mixer 설계)

  • Kim Min-Seok;Moon Ju-Young;Yun Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.719-724
    • /
    • 2006
  • In this paper, we designed the double conversion down mixer by using Half-LO frequency in 2.3 GHz band. The IF frequency is obtained by supplying two LO frequencies to HEMT in both gate type and resistive type. The proposed mixer uses Half-LO frequency the same way as conventional sub-harmonic mixers. However the proposed one uses fundamental component of Half-LO frequency in first stage instead of using second harmonic components of Half-LO frequency, and the IF frequency is obtained by resistive type mixer in second stage, thereby the proposed mixer can improve linearity in comparison with conventional active mixer. We can verify that the proposed mixer has an conversion loss of 5dBm and IIP3 of 16.25dBm by using 10 dBm Power.

Design of Double Balanced MMIC Mixer for Ka-band (Ka-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 2004
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the schottky diode of InGaAs/CaAs p-HEMT process has been developed for receiver down converter of Ka-band. A different approach of MMIC mixer structure is applied for reducing the chip size by the exchange of ports between IF and LO. This MMIC covers with RF (30.6∼31.0㎓)and IF (20.8∼21.2㎓). According to the on-wafer measurement, the MMIC mixer with miniature size of 3.0mm1.5mm demonstrates conversion loss below 7.8㏈, LO-to-RF isolation above 27㏈, LO-to-IF isolation above 19㏈ and RF-to-IF isolation above 39㏈, respectively.

Development of an SIS(Superconductor-Insulator-Superconductor) Junction Mixer over 120∼180 GHz Band (120∼180 GHz 대역 SIS (Superconductor-Insulator-Superconductor) 접합 믹서의 개발)

  • Chung, Moon-Hee;Lee, Changhoon;Kim, Kwang-Dong;Kim, Hyo-Ryoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.737-743
    • /
    • 2004
  • A fixed-tuned SIS(Superconductor-Insulator-Superconductor) mixer across 120∼180 GHz band has been developed. This mixer employs an SIS chip fabricated by Nobeyama radio observatory which consists of a series array of 6 Nb/Al-Al$_2$O$_3$/Nb junctions in a microstrip line on a fused quartz substrate. The SIS chip is placed at the center of the half-height waveguide mixer mount to have a good incoming signal coupling over the whole frequency band. No mechanical tuner was used in the SIS mixer and the RF signal and local oscillator power are injected to the mixer via a cooled cross-guide coupler. In order to prevent the IF signal loss, the If output impedance of the SIS mixer was matched to the 50 $\Omega$ input impedance of the IF chain. Measured double sideband noise temperatures of a receiver using the SIS mixer are 32∼131 K over 120∼180 GHz band. The developed SIS mixer is now in use for radio astronomical observations on the TRAO 14 m radio telescope.

A Design of MMIC Mixer for I/Q Demodulator of Non-contact Near Field Microwave Probing System (비접촉 마이크로웨이브 프루브 시스템의 I/Q Demodulator를 위한 MMIC Mixer의 설계)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1023-1028
    • /
    • 2012
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the Schottky diode of an GaAs p-HEMT process has been developed for the I/Q demodulator of non-contact near field microwave probing system. A single balanced mixer type is adopted to achieve simple structure of the I/Q demodulator. A quadrature hybrid coupler and a quarter wavelength transmission line for 180 degree hybrid are realized with lumped elements of MIM capacitor and spiral inductor to reduce the mixer chip size. According to the on-wafer measurement, this MMIC mixer covers RF and LO frequencies of 1650MHz to 2050MHz with flat conversion loss. The MMIC mixer with miniature size of $2.5mm{\times}1.7mm$ demonstrates conversion loss below 12dB for both variations of RF and LO frequencies, LO-to-IF isolation above 43dB and RF-to-IF isolation above 23dB, respectively.

Single-Balanced Low IF Resistive FET Mixer for the DBF Receiver

  • Ko Jee-Won;Min Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.143-149
    • /
    • 2004
  • This paper describes characteristics of the single-balanced low IF resistive FET mixer for the digital beam forming(DBF) receiver. This DBF receiver based on the direct conversion method is designed with Low IF I and Q channel. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(IF) considered in this research are 1950 MHz, 1940 MHz and 10 MHz, respectively. Super low noise HJ FET of NE3210S01 is considered in design. The measured results of the proposed mixer are observed IF output power of -22.8 dBm without spurious signal at 10 MHz, conversion loss of -12.8 dB, isolation characteristics of -20 dB below, 1 dB gain compression point(PldB) of -3.9 dBm, input third order intercept point(IIP3) of 20 dBm, output third order intercept point(OIP3) of 4 dBm and dynamic range of 30 dBm. The proposed mixer has 1.0 dB higher IIP3 than previously published single-balanced resistive and GaAs FET mixers, and has 3.0 dB higher IIP3 and 4.3 dB higher PldB than CMOS mixers. This mixer was fabricated on 0.7874 mm thick microstrip $substrate(\varepsilon_r=2.5)$ and the total size is $123.1\;mm\times107.6\;mm$.

Design of Image Rejection SSB Modulator for X-Band Monopulse RADAR using Waveguide Hybrid Coupler (도파관 하이브리드 커플러를 이용한 X-대역 모노펄스 레이더용 이미지 제거 SSB 변조기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.34-40
    • /
    • 2011
  • From the present paper researched about the Design of Image Rejection SSB Modulator for X-Band Monopulse RADAR using Waveguide Hybrid Coupler. Generally, SSB modulator mixes IF(RF) and LO signals, and then it converts to RF(IF) frequency band. In this case, in order to transmit one sideband from RF band, SSB modulator is demanded the removal of image and LO signal. The balanced mixer was designed using waveguide hybrid coupler and crystal mixer diode to mix LO and IF signal. And also the IF Amplifier was designed for IF(+) and IF(-) signal generation which have $90^{\circ}$ phase differences which are suitable in two crystal mixer diode inputs. In order to maintain a high electric reliability from high frequency band the waveguide and IF amplifier's case were manufactured with aluminum using deep brazing techniques. The test result of SSB modulator, LO and sideband signal rejection ratio were 14.2dB and 18.5dB respectively.

A Design of Direct conversion method 2.45GHz Low-IF Mixer Using CMOS 0.18um Process (CMOS 0.18um 공정을 이용한 2.45GHz Low-IF 직접 변환 방식 혼합기 설계)

  • Choi, Jin-Kyu;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.414-417
    • /
    • 2008
  • This paper presents the design and analysis of 2.45GHz Low-IF Mixer using CMOS 0.18um. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. And the design of this Double Balance Mixer is based on its lineaity since it is important in the interference cancellation system. The low flicker noise mixer is implemented by incorporating a double balanced Gilber-type configuration, the RF leakage-less current bleeding technique, and Cp resonating technique. The proposed mixer has a simulated conversion gain of 16dB a simulated IIP3 of -3.3dBm and P1dB is -19dBm. A simulated noise figure of 6.9dB at l0MHz and a flicker corner frequency of 510kHz while consuming only 10.65mW od DC power. The layout of Mixer for one-chip design in a 0.18-um TSMC process has 0.474mm$\times$0.39 mm size.

  • PDF

Low IF Resistive FET Mixer for the 4-Ch DBF Receiver with LNA (LNA를 포함하는 4채널 DBF 수신기용 Low IF Resistive FET 믹서)

  • 민경식;고지원;박진생
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.16-20
    • /
    • 2002
  • This paper describes the resistive FET mixer with low IF for the 4-Ch DBF(Digital Beam Forming) receiver with LNA(Low Noise Amplifier). This DBF receiver based on the direct conversion method is generally suitable for high-speed wireless mobile communications. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(IF) considered in this research are 2.09 ㎓, 2.08 ㎓ and 10㎒, respectively. The RF input power, LO input power and Vgs are used -10㏈m, 6㏈m and -0.4 V, respectively. In the 4-Ch resistive FET mixer with LNA, the measured IF and harmonic components of 10㎒, 20㎒, 2.09㎓ and 4.17㎓ are about -12.5 ㏈m, -57㏈m, -40㏈m and -54㏈m, respectively. The IF output power observed at each channel of 10㎒ is about -12.5㏈m and it is higher 27.5 ㏈m than the maximum harmonic component of 2.09㎓. Each IF output spectrum of the 4-Ch is observed almost same value and it shows a good agreement with the prediction.

  • PDF

Design for the Low If Resistive FET Mixer for the 4-Ch DBF Receiver

  • Ko, Jee-Won;Min, Kyeong-Sik;Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 2002
  • This paper describes the design for the resistive FET mixer with low If for the 4-Ch DBF(Digital Beam Forming) receiver This DBF receiver based on the direct conversion method is generally suitable for high-speed wireless mobile communications. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(If) considered in this research are 2.09 GHz, 2.08 CHz and 10 MHz, respectively. This mixer is composed of band pass filter, a low pass filter and a DC bias circuit. Super low noise HJ FET of NE3210S01 is considered in design. The RE input power, LO input power and Vcs are used -10 dBm, 6 dBm and -0.4 V, respectively. In the 4-Ch resistive FET mixer, the measured If and harmonic components of 10 MHe, 20 MHz and 2.087 CHz are about -19.2 dBm, -66 dBm and -48 dBm, respectively The If output power observed at each channel of 10 MHz is about -19.2 dBm and it is higher 28.8 dBm than the maximum harmonic component of 2.087 CHz. Each If output spectrum of the 4-Ch is observed almost same value and it shows a good agreement with the prediction.