• Title/Summary/Keyword: IEGT

Search Result 2, Processing Time 0.012 seconds

Transmission Line Analysis of Accumulation Layer in IEGT

  • Moon, Jin-Woo;Chung, Sang-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.824-828
    • /
    • 2011
  • Transmission line analysis of the surface a cumulation layer in injection-enhanced gate transistor (IEGT) is presented for the first time, based on per-unit-length resistance and conductance of the surface layer beneath the gate of IEGT. Lateral electric field on the accumulation layer surface, as well as the electron current injected into the accumulation layer, is governed by the well-known wave equation, and decreases as an exponential function of the lateral distance from the cathode. Unit-length resistance and conductance of the layer are expressed in terms of the device parameters and the applied gate voltage. Results obtained from the experiments are consistent with the numerical simulations.

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.