• Title/Summary/Keyword: IEEE1609.4

Search Result 10, Processing Time 0.023 seconds

Analytical Study of the Impact of the Mobility Node on the Multi-channel MAC Coordination Scheme of the IEEE 1609.4 Standard

  • Perdana, Doan;Cheng, Ray-Guang;Sari, Riri Fitri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.61-77
    • /
    • 2017
  • The most challenging issues in the multi-channel MAC of the IEEE 1609.4 standard is how to handle the dynamic vehicular traffic condition with a high mobility, dynamic topology, and a trajectory change. Therefore, dynamic channel coordination schemes between CCH and SCH are required to provide the proper bandwidth for CCH/SCH intervals and to improve the quality of service (QoS). In this paper, we use a Markov model to optimize the interval based on the dynamic vehicular traffic condition with high mobility nodes in the multi-channel MAC of the IEEE 1609.4 standard. We evaluate the performance of the three-dimensional Markov chain based on the Poisson distribution for the node distribution and velocity. We also evaluate the additive white Gaussian noise (AWGN) effect for the multi-channel MAC coordination scheme of the IEEE 1609.4 standard. The result of simulation proves that the performance of the dynamic channel coordination scheme is affected by the high node mobility and the AWGN. In this research, we evaluate the model analytically for the average delay on CCHs and SCHs and also the saturated throughput on SCHs.

Dynamic Channel Allocation Using SJF Scheduling in IEEE 802.11p/1609 Vehicular Network (IEEE 802.11p/1609 차량 네트워크에서 SJF(Shortest Job First) 스케쥴링을 이용한 동적 채널 할당 기법)

  • Jang, Hyun-Jun;Kwon, Yong-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.624-627
    • /
    • 2014
  • In vehicular network, the basic goal is to provide vehicle safety service and commercial service such as ITS(Intelligent Transportation System) or video, etc on the road. And most research concentrated on transportation of safety message in congestion situation. It is important to allocate channel for safety message in congestion situation, but providing suitable service is also important problem in vehicular network. For this reason, IEEE 1609.4 allocate 4 multiple service channels (SCHs) for non-safety data transfer. But, in congestion situation with many vehicles, the contention for channel acquisition between services becomes more severe. So services are provided improperly because of lack of service channel. This paper suggests dynamic channel allocation algorithm. The proposed algorithm is that RSU(RaodSide Unit) maintain and manage the information about service and status of channels. On based of the SJF(Shortest Job First) scheduling using those information, RSU selects the most appropriate channel among the 4 SCHs allocated by IEEE 1609.4 in network congestion situation.

  • PDF

A Packet Collision Avoidance Technique in IEEE1609.4 Based Time Synchronization Multi-channel Environment (IEEE1609.4 기반 시간 동기 멀티채널 환경에서의 패킷 충돌 회피 기법)

  • Jin, Seong-Keun;Lim, Ki-Taeg;Shin, Dae-Kyo;Yoon, Sang-Hun;Jung, Han-Gyun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we analyze the communication performance in a time synchronous multi-channel environment and deal with a packet collision avoidance technique to improve it based on IEEE1609.4 for increasing the efficiency of the control channel IEEE802.11p WAVE communication system. In previous works, they tried to solve this problem by message scheduling method on application layer software or changing the value of the random back-off optionally Contention Window. In this paper, we propose a method for adjusting the Channel Guard Interval for packet collision avoidance. The performance was evaluated by the actual vehicle test. The result was confirmed performance over 90% PDR(Packet Delivery Ratio).

Deciding Priority of Safety Messages using Decision Tree in IEEE 802.11p/1609.4 Vehicular Network (802.11p/1609 차량네트워크에서 Decision Tree를 이용한 안전메세지 우선순위 결정 기법)

  • Baik, Hyein;Kwon, YongHo;Rhee, Byung Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.794-797
    • /
    • 2015
  • As the interest in VANET is increased, a study on the beacon message transmission between vehicles is actively being made. IEEE 802.11p/1609.4 standard is based on a multichannel system consisting of multiple service channels (SCH) and a control channel (CCH). Multiple SCHs are defined for nonsafety data transfer, while the CCH is used to broadcast safety messages called beacons and control messages (i.e., service advertisement messages). However, most messages broadcast in the only one CCH belong to safety application that must be contested in dense vehicular network. This paper suggests safety message transfer algorithm in dense vehicular congestion. The proposed algorithm is that the priority of safety messages is decided by decision tree and messages are stored in proper queues according to their priorities. Then, safety messages with higher priorities are sent in turn by CCH in the assigned time. The proposed algorithm decreases the beacon transmission delay and increase on the probability of a successful beacon reception in an IEEE 802.11p/1609.4-based network.

  • PDF

Design and Implementation of an IEEE WAVE Multi-channel Transmission Emulator (IEEE WAVE 멀티채널 전송 에뮬레이터의 설계 및 구현)

  • Lee Woo-Sin;Lee Hyuk-Joon;Lee Sang-Lock;Lee Won-Gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.1-8
    • /
    • 2005
  • IEEE WAVE(Wireless Access in Vehicular Environment) is being developed to operate in 5 GHz DSRC band to provide cars moving at high-speed with vehicle-to-vehicle and vehicle-to-roadside communication. IEEE P 1609.3 of the WAVE protocol stack defines how multiple channels are used based on the exchange of provider-service-tables (PST) and user-service-tables (UST) for rapid link establishment and data transmission. This paper presents the design and implementation of an IEEE WAVE multi-channel transmission emulator that we have developed to study the operation of protocol and applications. Applications for a public-safety and a download service have been implemented and are shown to operate effectively on top of the emulator.

  • PDF

A Frame Collision Reduction Method for Safety Message Broadcasting in IEEE1609.4/IEEE802.11p based VANETs

  • Wang, Lei;Jing, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1031-1046
    • /
    • 2018
  • Vehicular ad hoc network (VANET) is a dedicated network to connect vehicles without any centralized administration or infrastructure. The wireless access in vehicular environments (WAVE) protocol leveraging IEEE 1609/802.11p is widely implemented for VANETs. However, in congested traffic situation, the performance of the WAVE system degrades significantly due to serious collision, especially for safety related broadcast services on the control channel (CCH) interval due to the inherent drawback of its collision avoidance mechanisms called carrier sense multiple access with collision avoidance (CSMA/CA). In this paper, we propose a method that can decrease the number of frame collisions in CCH with a few modifications to the IEEE 802.11p protocol. In the paper, vehicles still employ CSMA/CA to compete for the channel access opportunity. However, by taking advantage of periodicity of synchronization interval, a two-state switching scheme introducing two new inter frame space (IFS) is proposed to reduce the number of competing vehicles substantially and as a result, the collision probability is significantly decreased. The simulation results demonstrate the superiority of the proposed method in packet collision rate.

Study on MAC Protocols for Efficient Data Processing in VANETs (차량 통신 네트워크에서 효율적인 데이터 처리를 위한 MAC 프로토콜 기술 연구)

  • Park, Chan-Ki;Kim, Jun-Su;Ryu, Min-Woo;Kim, Dae-Young;Cha, Si-Ho;Cho, Kuk-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.481-485
    • /
    • 2012
  • 차량 통신 네트워크(VANET, Vehicular Ad Hoc Network)는 운전자 안전 정보 및 ITS(Intelligent Transp ortation System) 서비스를 지원하기 위해 IEEE 1609.4와 IEEE 802.11p를 활용한다. 그러나 차량 노드들의 숫자가 증가할 경우에는 트래픽 경합 문제(Traffic Contention Problem), 숨은 터미널 문제(Hidden Terminal Problem), 전송 지연 문제, 경합으로 인한 패킷 손실 문제, 처리량 감소 문제, MAC의 동적 채널 할당 방법 등 많은 문제점이 발생한다. 따라서 본 논문에서는 IEEE 1609.4와 IEEE 802.11p 기반 차량 통신 네트워크의 특징을 살펴봄으로써 기존 제안되었던 차량 통신 네트워크를 위한 MAC 및 멀티채널 기술의 특징의 장단점을 분석한다. 또한 분석된 문제점을 해결하기 위한 연구 방향을 제시한다.

  • PDF

Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution (802.11p 기반 다중 라디오 다중채널 네트워크 환경에서 안전 메시지 전송을 위한 내쉬 협상 해법을 이용한 채널할당)

  • Kwon, Yong-Ho;Rhee, Byung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • For the safety messages in IEEE 802.11p vehicles network environment(WAVE), strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. WAVE standards apply multiple radios and multiple channels to provide open public road safety services and improve the comfort and efficiency of driving. Although WAVE standards have been proposed multi-channel multi-radio, the standards neither consider the WAVE multi-radio environment nor its effect on the beacon broadcasting. Most of beacon broadcasting is designed to be delivered on only one physical device and one control channel by the WAVE standard. also conflict-free channel assignment of the fewest channels to a given set of radio nodes without causing collision is NP-hard, even with the knowledge of the network topology and all nodes have the same transmission radio. Based on the latest standard IEEE 802.11p and IEEE 1609.4, this paper proposes an interference aware-based channel assignment algorithm with Nash bargaining solution that minimizes interference and increases throughput with wireless mesh network, which is deigned for multi-radio multi-cahnnel structure of WAVE. The proposed algorithm is validated against numerical simulation results and results show that our proposed algorithm is improvements on 8 channels with 3 radios compared to Tabu and random channel allocation algorithm.

Wireless Mesh Network based on Routing Algorithm for guaranteing QoS between End-to-End in VANET (차량 통신 네트워크에서 End-to-End간의 QoS 보장을 위한 무선 메쉬 네트워크 기반의 라우팅 알고리즘)

  • Ryu, Min-Woo;Yoon, Jae-Seok;Lee, Sang-Shin;Won, Kwang-Ho;Cho, Kuk-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.428-432
    • /
    • 2011
  • 차량 통신 네트워크(VANET, Vehicle Ad hoc NETwork)는 ITS(Intelligent Transport System)의 발전과 함께 운전자의 안전 및 교통 정보, 긴급 메시지 등과 같은 서비스를 실시간으로 가능하게 할 수 있는 차세대 네트워크 기술이다. 이러한 차량 통신 네트워크는 현재 IEEE P1609에서 정의하고 있으며, WAVE(Wireless Access Vehicular Environment)로 알려져 있다. WAVE는 차량에 설치된 OBU(Onboard Unit)와 주변시설에 설치된 RSU(Road Side Unit)을 통하여 통신하며, 차량 간 통신을 지원하는 V2V(Vehicle to Vehicle)와 차량과 주변시설과의 통신을 지원하는 V2I(Vehicle to Infrastructure)로 나뉘어져 있다. 하지만 WAVE에서 정의하고 있는 네트워크 서비스(IEEE P1609.4)는 OBU와 RSU 간의 네트워크 서비스에 초점을 맞추고 있기 때문에 전체 네트워크의 QoS를 보장하기에는 미흡한 상태이다. 따라서 본 논문에서는 차량 통신 네트워크에서 End-to-End 간의 QoS 보장을 위한 무선 메쉬 네트워크 기반의 라우팅 알고리즘을 제안한다. 제안하는 알고리즘은 무선 메쉬 네트워크 노드의 호스트 라우터 기능을 통하여 차량 노드와 이기종 간의 네트워크 서비스를 가능하게 하며, 무선 메쉬 네트워크의 다중 채널을 이용하여 데이터의 중요도에 따른 차등 서비스를 지원한다. ns-2를 이용한 시뮬레이션 결과 제안하는 알고리즘이 QoS를 보장함으로써 차량 통신 네트워크의 성능을 향상시킬 수 있음을 입증하였다.

  • PDF