• Title/Summary/Keyword: IEEE-Standard

Search Result 833, Processing Time 0.025 seconds

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP (멀티코어 DSP를 사용한 SDR 기반 IEEE 802.11ac 인코더의 설계 및 구현)

  • Zhang, Zhongfeng;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.93-101
    • /
    • 2019
  • This paper presents a software design and implementation of software-defined radio based IEEE 802.11ac encoder using Texas Instruments TMS320C6670 digital signal processor (DSP) platform. In this paper, the implemented encoder has the capability of generating all the signals consisting of preamble field and data field under different modulation & coding scheme in the IEEE 802.11ac standard. Moreover, the flexibility in choosing different rate, bandwidth, or mode can also be achieved by software reconfiguration using the DSP. As a result, by utilizing the computing power provided by multi-cores as well as the FFT coprocessors in the DSP, the required maximum throughput 78Mbps can be fully reached within 4 ㎲ for each OFDM symbol in the case of 20MHz bandwidth of IEEE 802.11ac.

Multi-channel QoS scheduling algorithm in IEEE 802.15.4e (IEEE 802.15.4e 멀티 채널 QoS 스케줄링 알고리즘)

  • Wu, Hyuk;Kim, Hak-Kyu;Lee, Dong-Jun;Kang, Ho-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.764-773
    • /
    • 2011
  • IEEE 802.15.4 is a standard for LWPAN based on TDMA. IEEE 802.15.4 has not been used widely because of restrictions on the QoS, scalability, and reliability. IEEE 802.15.4 utilizes GTS for one-hop QoS transmission. However GTS is not an effective method to satisfy QoS in multi-hop environments. Currently IEEE 802.15.4e, an extended version of IEEE 802.15.4 MAC sub-layer, is being developed to satisfy more diverse performance requirements than IEEE 802.15.4. IEEE 802.15.4e provides muti-hop QoS transmission functionality and uses multiple frequency channels. In this paper, a multi-channel TDMA scheduling scheme is proposed to satisfy end-to-end transmission delay in IEEE 802.15.4e. The performance of the proposed scheme is evaluated using simulation.

Floating Point Converter Design Supporting Double/Single Precision of IEEE754 (IEEE754 단정도 배정도를 지원하는 부동 소수점 변환기 설계)

  • Park, Sang-Su;Kim, Hyun-Pil;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.72-81
    • /
    • 2011
  • In this paper, we proposed and designed a novel floating point converter which supports single and double precisions of IEEE754 standard. The proposed convertor supports conversions between floating point number single/double precision and signed fixed point number(32bits/64bits) as well as conversions between signed integer(32bits/64bits) and floating point number single/double precision and conversions between floating point number single and double precisions. We defined a new internal format to convert various input types into one type so that overflow checking could be conducted easily according to range of output types. The internal format is similar to the extended format of floating point double precision defined in IEEE754 2008 standard. This standard specifies that minimum exponent bit-width of the extended format of floating point double precision is 15bits, but 11bits are enough to implement the proposed converting unit. Also, we optimized rounding stage of the convertor unit so that we could make it possible to operate rounding and represent correct negative numbers using an incrementer instead an adder. We designed single cycle data path and 5 cycles data path. After describing the HDL model for two data paths of the convertor, we synthesized them with TSMC 180nm technology library using Synopsys design compiler. Cell area of synthesis result occupies 12,886 gates(2 input NAND gate), and maximum operating frequency is 411MHz.

Design and Development of Personal Healthcare System Based on IEEE 11073/HL7 Standards Using Smartphone (스마트폰을 이용한 IEEE 11073/HL7 기반의 개인 건강관리 시스템 설계 및 구현)

  • Nam, Jae-Choong;Seo, Won-Kyeong;Bae, Jae-Seung;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1556-1564
    • /
    • 2011
  • The increased life expectancy of human due to the advance of medical techniques has led to many social problems such as rapidly aging populations, increased medical expenses and a lack of medical specialists. Thus, studies on improving the quality of life with the least amount of expense have been going on by incorporating advanced technologies, especially for Personal Health Devices (PHDs), into the medical service market. However, compatibility and extensibility among manufacturers of PHDs have not been taken into account in most of the researches done on the development of PHDs because most of them have been supported by individual medical organizations. The interoperability among medical organizations can not be guaranteed because each medical organization uses different format of the messages. Therefore, in this paper, an expansion module that can enable commercially-available non-standard PHDs to support the IEEE 11073, and a smart-phone-based manager that can support easy and comprehensive management on receiving and transmitting the collected data from each PHD using IEEE 11073 standard were developed. In addition, a u-health system that can transmit the data collected in the manager using the standard data format HL 7 to medical center for real-time medical service from every medical institutions that support this standard was designed and developed.

A Study on the Security Mechanism to Reduce Authentication Time in Wireless LAN(IEEE 802.11) (Wireless LAN(IEEE 802.11)에서 인증시간 단축을 위한 보안 메커니즘에 관한 연구)

  • Hong, Kyung-Sik;Seo, Jong-Soo;Ko, Kwang-Yong;Jung, Jun-Ha;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.112-120
    • /
    • 2009
  • Both security enhancement in wireless and fast access for mobility are required to employ wireless LAN in ITS (Intelligent Transportation Systems). However, for the case of employing IEEE 802.11i security standard, it is known that the user authentication procedure of IEEE 802.1x and 4-way handshake procedure for stronger security enforcement may not be suitable for ITS due to its large delay. In this paper, we propose fast authentication method to resolve the above authentication delay problem, and verify its performance via simulation analysis.

  • PDF

Performance Measurement of IEEE 802.11p based Communication Systems in Large Capacity Transmission (IEEE 802.11p 기반 통신시스템의 대용량 전송 성능 측정)

  • Cho, Woong;Choi, Hyun-Kyung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1359-1364
    • /
    • 2014
  • IEEE 802.11p is a representative PHY/MAC layer standard in vehicular communications. The performance of IEEE 802.11p based communication systems has been measured in various criterions such as link setup time, error rate, and throughput for the case of one-to-one. In this paper, we measure the performance of IEEE 802.11p based communication systems in large capacity transmission. The performance of large capacity transmission is measured by considering the maximum 32 simultaneous transmission including one-to-one transmission. We consider two transmission schemes, i.e., broadcasting and unicasting, and the performance is represented as the receiving rate and throughput.

Mitigating Hidden Nodes Collision and Performance Enhancement in IEEE 802.15.4 Wireless Sensor Networks (IEEE 802.15.4 기반의 무선 센서네트워크에서 숨은노드 충돌 방지와 성능향상 기법)

  • Ahn, Kwang-Hoon;Kim, Taejoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.235-238
    • /
    • 2015
  • IEEE 802.15.4 is the well-established standard enabling wireless connectivities among wireless sensor nodes. However, the wireless sensor networks based on IEEE 802.15.4 are inherently vulnerable to hidden nodes collision because the wireless sensor nodes have very limited communication range and battery life time. In this paper, we propose the advanced method of mitigating hidden nodes collision in IEEE 802.15.4 base wireless sensor networks by clustering sensor nodes according to channel quality information. Moreover, we deal with the problem of resource allocation for each cluster.

Queuing Analysis of IEEE 802.15.4 GTS Scheme for Bursty Traffic (Bursty Traffic을 위한 IEEE 802.15.4 GTS 기법의 대기 해석)

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • The IEEE 802.15.4 and IEEE 802.15.7 standard are the typical of low rate wireless and Visible Light Wireless personal area networks. Its Medium Access Control protocol can support the QoS traffic flows for real-time application through guaranteed time slots (GTS) in beacon mode. However, how to achieve a best allocation scheme is not solved clearly. The current analytical models of IEEE 802.15.4 MAC reported in the literature have been mainly developed under the assumption of saturated traffic or non-bursty unsaturated traffic conditions. These assumptions don't capture the characteristics of bursty multimedia traffic. In this paper, we propose a new analytical model for GTS allocation with burst Markov modulated ON-OFF arrival traffic.

Mobile WiMAX 보안 이슈와 해결 방안

  • Son, Tae-Sik;Choe, Uk;Choe, Hyo-Hyeon
    • Information and Communications Magazine
    • /
    • v.24 no.11
    • /
    • pp.5-13
    • /
    • 2007
  • 광대역 무선 접속 표준을 관장하는 IEEE 802.16 워킹 그룹은 IEEE 802.16 표준을 2004년에 발표하였으며 이 IEEE 802.16 표준안에는 현재 WiMAX(Worldwide Interoperability for Microwave Access)라 불리는 고정 및 저속 이동 접속에 대한 광대역 무선 통신 지원 기술이 포함되어 있다. 특히 여러 기술 중 보안 관점에서 IEEE 802.16 표준은 MAC 계층 안에 PKM(Privacy Key Management)라고 불리는 Security Sub-layer를 가지고 있다. PKM은 PKMv1과 PKMv2로 구분되며, 먼저 PKMv1은 기본적인 인증 및 기밀성 기능을 제공하고 IEEE 802.16 표준에 기본적으로 적용되어있다. 하지만, IEEE 802.16 표준 이후 많은 연구들이 PKMv1의 보안성에 대하여 의문을 제기하였고 이에 따라 IEEE 802.16 표준안의 확장 개선안으로서 완전한 이동성을 바탕으로 하는 2005년 발표된 IEEE 802.16e 표준안에서는 향상된 보안 기능을 제공하는 PKMv2를 제공하며 기존 표준안의 부족한 점을 보완하기 위하여 시도하였다. 이러한 PKMv2는 EAP(Extensible Authentication Protocol) 인증, AES(Advanced Encryption Standard) 기반 기밀성 제공 알고리즘, CMAC/HMAC(Cipher/Hashed Message Authentication Code)을 사용한 메시지 인증 기능 제공 등 보다 다양한 보안 기능을 제공하였다. 그러나 IEEE 802.16e 표준안의 보안 기능은 SS(Subscriber Station)과 BS(Base Station)간의 통신구간 보안에 초점을 맞추어서 네트워크 도메인간의 보안 문제나 핸드오버시 보안과 같은 네트워크 구조적 보안 취약성을 여전히 가지고 있다. 하지만 표준안에서 정의하고 있는 SS와 BS 구간 보안 역시 완전한 솔루션을 제시하고 있지는 않다. 본 논문에서는 이러한 취약성을 고찰하고 그에 따른 대응방안을 제시하였다.

A study on uplink QoS packet scheduler for VoIP service in IEEE 802.16 systems (IEEE 802.16 시스템에서 VoIP 서비스를 위한 역방향 링크 QoS 패킷 스케줄러에 대한 연구)

  • Jang, Jae-Shin;Lee, Jong-Hyup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.145-152
    • /
    • 2009
  • IEEE 802.16e standard, a kind of WMAN standard, was established to support data services with cheaper cost to mobile users than traditional mobile communications system and wireless LAN system can do. In this paper, we propose an uplink QoS packet-scheduler for VoIP service which can be installed in IEEE 802.16 system and evaluate its performance with NS-2 network simulator. The proposed QoS packet-scheduler consists of three procedures: determining scheduler interval, determining the amount of resource assignment, and deciding which mobile station the base station should serve first among multiple mobile stations. According to numerical results, the proposed QoS packet-scheduler can provide more increased system capacity by 220% than UGS service scheme does and by 25 % than ertPS service scheme does.