• Title/Summary/Keyword: IEEE 802.3

Search Result 736, Processing Time 0.032 seconds

A Proxy-Based Fast Handover Scheme in Mobile WiMAX Networks (Mobile WiMAX에서 Proxy 기반의 고속 핸드오버 방안)

  • Lee, Hwa-Sub;Kim, Bok-Ki;Min, Sang-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.65-72
    • /
    • 2009
  • In this paper, we propose a proxy-based fast handover scheme to improve a performance in the mobile WiMAX network using PMIPv6 for supporting the network-layer mobility. In our proposed scheme, we define three link-layer messages and one network-layer message to reduce the handover latency, and propose a buffering mechanism to minimize packet loss and solve out-of-sequence problem. A performance evaluation indicates that the proposed scheme works more efficiently than PMIPv6 in terms of the handover latency and packet loss.

  • PDF

Concurrent Channel Time Allocation for Resource Management in WPANs

  • Park, Hyunhee;Piamrat, Kandaraj;Singh, Kamal Deep
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • This paper presents a concurrent channel time allocation scheme used in the reservation period for concurrent transmissions in 60-GHz wireless personal area networks (WPANs). To this end, the proposed resource allocation scheme includes an efficient method for creating a concurrent transmission group by using a table that indicates whether individual streams experience interference from other streams or not. The coordinator device calculates the number of streams that can be concurrently transmitted with each stream and groups them together on the basis of the calculation result. Then, the coordinator device allocates resources to each group such that the streams belonging to the same group can transmit data concurrently. Therefore, when the piconet coordinator (PNC) allocates the channel time to the individual groups, it should allow for maximizing the overall capacity. The performance evaluation result demonstrates that the proposed scheme outperforms the random grouping scheme in terms of the overall capacity when the beamwidth is $30^{\circ}C$ and the radiation efficiency is 0.9.

Mathematical Analysis for Efficiency of Eavesdropping Attack Using Directional Antenna in mmWave Band (밀리미터파 대역에서 지향성 안테나 사용에 의한 도청공격 대응 효율성의 수학적 분석)

  • Kim, Meejoung;Kim, Jeong Nyeo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1074-1077
    • /
    • 2013
  • This paper analyzes the benefit of using directional antennas against eavesdropping attack in millimeter wave (mmWave)-based networks. All devices are equipped with a directional antenna or an omni-directional antenna in a single-hop communications. The probability of a device being detected by an eavesdropper is analyzed based on the exposure region of a device. The relative detection rate is introduced to represent the benefit of using directional antenna. Numerical results show that there exists an optimal number of devices that maximizes the detection probability and it varies according to the parameters such as antenna beamwidth. It shows that the use of directional antenna enables to protect the devices from the detection by an eavesdropper for almost the whole situation in mmWave band communication.

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

A Study on Control Scheme for Media Access in Wireless Sensor Network (무선 센서 네트워크를 위한 미디어 엑세스 처리에 관한 연구)

  • Yun, Jung-Mee;Kim, Dae-Hwan;Park, Jin-Hee;Kim, Yong-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.705-708
    • /
    • 2003
  • 본 논문에서는 무선 센서 네트워크의 특성을 고려한 미디어제어 프로토콜의 설계에 있어서의 고려사항 및 설계기법에 대해서 제안하고 있다. 무선 센서 네트워크는 제한된 에너지를 가지는 배터리를 에너지원으로 사용하는 센싱 디바이스들로 구성되어 있으며, 이러한 디바이스들로 구성된 네트워크는 하나 혹은 그 이상의 공통의 작업을 수행하는데 그 목적이 있다. 일반적으로 무선 센서네트워크는 ad hoc 헝태의 구조를 가지며, 각각의 노드들은 장시간동안 비활성화 상태에 머무르게 되며, 센싱을 하기 위한 특정 이벤트가 발생하였을 때만 활성 상태로 전이하게 된다. 이와 같은 센서 네트워크의 특성은 IEEE802.11 과 같은 기존의 무선 미디어 제어 프로토콜과는 차별성을 띄게 된다. 센서 네트워크는 노드별 미디어 접근 공정성이나 시간지연보다는 에너지절약과 위상자동설정에 더 중점을 두고 있기 때문에 이에 적합한 미디어 제어 기술이 필요한 것이다. 본 고에서는 에너지 소모를 최소화하고 위상 자동 설정을 지원하기 위한 3 가지의 기법들에 대해서 제안하고자 한다. 첫째로 이벤트 발생 여부에 따른 노드의 신호감지 및 Sleep 상태 전이 및 이웃 노드들과의 가상동기화기법을 이용한 에너지 절약 기법에 대해서 제안하고, 충돌회피 기법에 대해서 살펴보도록 하겠다.

  • PDF

Performance Evaluation of Switched Ethernet for Real-time Industrial Communication (실시간 산업용 통신을 위한 Switched Ethernet의 성능 평가)

  • Lee, Kyung-Chang;Kim, Tae-Jun;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • The real-time industrial network, often referred to as fieldbus, is an important element for building automated manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices, numerous fieldbus protocols have been announced. But the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet (IEEE 802.3), is being adapted to the industrial environment. However, the crucial technical obstacle for Ethernet is its non-deterministic behavior that makes it inadequate for industrial applications where real-time data have to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet for industrial communications. More specifically, this paper presents an analytical and experimental performance evaluation of the switched Ethernet and a case study about networked control system.

Design and Implementation of Wireless Sensor Network for Freeze Dryer

  • Cho, Young Seek;Kwon, Jaerock;Choi, Seyeong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • A wireless sensor network (WSN) is designed and implemented for a freeze dryer. Freeze-drying technology is widely used in the fields of pharmacy and biotechnology as well as the food and agriculture industries. Taking into account the demand for high-resolution pressure and temperature measurements in a freeze dryer, the proposed WSN has a significant advantage of creating a monitoring environment in a freeze dryer. The proposed WSN uses a ZigBee/IEEE 802.15.4 network with an altimeter module that contains a high-resolution pressure and temperature sensor with a serial digital data interface. The ZigBee network is suitable for low-energy and low-data-rate applications in the field of wireless communication. The altimeter module is capable of sensing pressure in the range of 7.5-975 Torr (10-1300 mbar) and temperature in the range of $-40^{\circ}C$ to $125^{\circ}C$ with a DC power consumption of $3{\mu}W$. The implemented WSN is installed in a commercial laboratory freeze dryer in order to demonstrate its functionality and efficiency. A comparison with the temperature profile measured by a thermocouple installed in the freeze dryer reveals that the resolution of the temperature profile measured by WSN is superior to that measured by the thermocouple.

Fast Spectrum Sensing with Coordinate System in Cognitive Radio Networks

  • Lee, Wilaiporn;Srisomboon, Kanabadee;Prayote, Akara
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.491-501
    • /
    • 2015
  • Spectrum sensing is an elementary function in cognitive radio designed to monitor the existence of a primary user (PU). To achieve a high rate of detection, most techniques rely on knowledge of prior spectrum patterns, with a trade-off between high computational complexity and long sensing time. On the other hand, blind techniques ignore pattern matching processes to reduce processing time, but their accuracy degrades greatly at low signal-to-noise ratios. To achieve both a high rate of detection and short sensing time, we propose fast spectrum sensing with coordinate system (FSC) - a novel technique that decomposes a spectrum with high complexity into a new coordinate system of salient features and that uses these features in its PU detection process. Not only is the space of a buffer that is used to store information about a PU reduced, but also the sensing process is fast. The performance of FSC is evaluated according to its accuracy and sensing time against six other well-known conventional techniques through a wireless microphone signal based on the IEEE 802.22 standard. FSC gives the best performance overall.

Simulation and measurement: Feasibility study of Tactile Internet applications for mmWave virtual reality

  • Na, Woongsoo;Dao, Nhu-Ngoc;Kim, Joongheon;Ryu, Eun-Seok;Cho, Sungrae
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Numerous wearable technology companies have recently developed several headmounted display (HMD) products for virtual reality (VR) services. 5G wireless networks aim at providing high-quality 3D multimedia services such as VR, augmented reality, and mixed reality. In this study, we examine the application of millimeter-wave (mmWave) technology to realize low-latency wireless communication between an HMD and its content server. However, the propagation characteristics of mmWave present several challenges such as the deafness, blockage, and beam alignment problems, and interference among content servers. In this study, we focus on an environment that provides VR services in the mmWave band and introduce existing techniques for addressing such challenges. In addition, we employ a commercialized IEEE 802.11ad VR dongle to measure the actual data rate of an mmWave VR application and identify the degree to which the performance deteriorates when the above problems occur. Finally, we verify the feasibility of the proposed solutions through a simulation of several VR scenarios in the mmWave band.

Real-time transmission properties of industrial switched Ethernet with cascade structure (다계층 구조를 가진 산업용 스위치드 이더넷에서의 실시간 전송 특성)

  • Lee, Kyung-Chang;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.718-725
    • /
    • 2004
  • The real-time industrial network, often referred to as fieldbus, is an important element for intelligent manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices, numerous fieldbus protocols have been announced. But, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet (IEEE 802.3), is being adapted to the industrial environment. However, the crucial technical obstacle for Ethernet is its non-deterministic behavior that makes it inadequate for industrial applications where real-time data have to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet with cascade structure for industrial communications. More specifically, this paper presents an analytical performance evaluation of switched Ethernet with cascade structure, and a case study about networked control system.