• Title/Summary/Keyword: IEEE 802.15.4a

Search Result 545, Processing Time 0.03 seconds

Dual-band Monopole Antenna with Half X-slot for WLAN (절반의 X-슬롯을 가진 무선랜용 이중대역 모노폴 안테나)

  • Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.449-455
    • /
    • 2018
  • For the size reduction, we propose a microstrip-fed monopole antenna with half X-slot in the radiation patch and cover WLAN dual band 2.4 GHz band (2.4 ~ 2.484 GHz) and 5 GHz band (5.15 ~ 5.825 GHz). The frequency characteristics such as impedance bandwidth and resonant frequencies were satisfied by optimizing the numerical values of various parameters, while the reflection loss in 5 GHz was improved by using defected ground structure (DGS). The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $24{\times}41mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 450 MHz (2.27 ~ 2.72 GHz) in 2.4 GHz band and 1340 MHz (4.79 ~ 6.13 GHz) in 5 GHz band which sufficiently satisfied with the IEEE 802. 11n standard in dual band. In particular, radiation patterns which are stable as well as relatively omni-direction could be obtained, and the gain of antennas in each band was 1.31 and 1.98 dBi respectively.

Joint Estimation Schemes of Carrier and Sampling Frequency Offsets for MB-OFDM UWB Systems (MB-OFDM UWB 시스템을 위한 반송파 및 샘플링 주파수 오프셋 결합 추정 기법)

  • Cho, Chang-Hoon;Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.965-975
    • /
    • 2005
  • In this paper, we propose and evaluate joint carrier and sampling frequency offset estimation schemes based on the channel estimation sequences in PLCP (Physical Layer Convergence Procedure) preamble for the proper and effcient synchronization of the MB-OFDM WB (Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) systems which have recently drawn explosive attention for future W-PAN (Wireless Personal Area Network) applications. In the joint estimation schemes, we first estimate the sampling frequency offset, and then estimate the carrier frequency offset using the estimated sampling frequency offset. Moreover, to improve the reliability of the estimated offset values, each process uses a combination scheme based on weighting factors. Simulation results using IEEE 802.15 Task Group 3a UWB channel models reveal that the estimation scheme using the simple weighting factors based on easily-measurable received signal power of each sub-channel shows favorably comparable performance to the ideal scheme using the weighting factors based on the perfectly-estimated frequency response of the channel.

Localization for Mobile Robot Based on Chirp Spread Spectrum Ranging (Chirp Spread Spectrum거리 측정을 이용한 이동 로봇의 위치 추정)

  • Cho, Hyeon-Woo;Lee, Young-Hun;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.994-1001
    • /
    • 2009
  • CSS (Chirp Spread Spectrum) specified in IEEE 802.15.4a can be used for ranging applications. In this paper, we apply the CSS to estimate the coordinates of a mobile robot. Four anchor nodes are installed at known positions and a tag node is attached to the target mobile robot. By CSS ranging, we measure the distances between each anchor and the tag node. Based on the measured distances, the coordinates of the mobile robot can be calculated by the method of trilateration. However the calculated coordinates are not accurate because of the errors of the measured distances. Therefore we propose an algorithm for reducing the effect of the errors. The proposed algorithm is executed with the extended Kalman filter. Through localization experiments, we show the performance of the proposed algorithm and the accuracy of the estimated position.

Performance Analysis of HDR-WPAN System with MIMO Techniques (MIMO 기법을 적용한 HDR-WPAN 시스템의 성능분석)

  • Han Deog-Su;Kang Chul-Gyu;Oh Chang-Heon;Cho Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1502-1509
    • /
    • 2006
  • In this paper, we proposed reliability and capacity enhancement methods for IEEE 802.15.3 HDR-WPAN (High Data Rate-Wireless Personal Area Network) system which is currently getting an interest in home network technology adopting a MIMO technique. We also analyzed performance or the proposed system through a computer simulation. The HDR-WPAN system using V-BLAST algorithm, transmitting the different signal vector to each other's sub-channel, can get the transmission speed of more than 110Mbps using two Tx/Px antenna without bandwidth expansion in TCM-64QAM mode. Also the proposed system has reliability of 104 at $E_b/N_0=35dB$ under the Rayleigh fading channel in case of two Tx/Rx antenna with MMSE algorithm. The HDR-WPAN system adopting V-BLAST method has its drawback which is very complicated to determine the decision-ordering at the receiver. But, the proposed system enhances the transmission capacity and reliability without extra bandwidth expansion by sending data streams to multiple antennas.

A Low-Power 2.4 GHz CMOS RF Front-End with Temperature Compensation

  • Kwon, Yong-Il;Jung, Sang-Woon;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • In this paper, a low-power 2.4 GHz front-end for sensor network application (IEEE 802.15.4 LR-WPAN) is designed in a 0.18 um CMOS process. A power supply circuit with a novel temperature-compensation scheme is presented. The simulation and measurement results show that the front-end (LNA, Mixer) can achieve a voltage gain of 35.3 dB and a noise figure(NF) of 3.1 dB while consuming 5.04 mW (LNA: 2.16 mW, Mixer: 2.88 mW) of power at $27^{\circ}C$. The NF includes the loss of BALUN and BPF. The low-IF architecture is used. The voltage gain, noise figure and third-order intercept point (IIP3) variations over -45$^{\circ}C$ to 85$^{\circ}C$ are less than 0.2 dB, 0.25 dB and 1.5 dB, respectively.

Grouping Algorithms of Zigbee Nodes for Efficient Data Transmission to Long Range (효율적인 원거리 데이터 전송을 위한 Zigbee 노드들의 그룹화 알고리즘)

  • Woo, Sung-Je;Shin, Bok-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.632-638
    • /
    • 2012
  • ZigBee network, based on PHY, MAC layer provides a specification for a suite of high level communication protocols using small, low-power digital radio based on an IEEE 802.15.4 standard. Meshing is a type of daisy chaining from one device to another. This technique allows the short range of an individual node to be expanded and multiplied, covering a much larger area. Each wireless technology that makes it to market serves a special purpose or function. Zigbee provides short-range connectivity in what is called a personal-area network (PAN). Within ZigBee PAN coordinator as manages an entire ZigBee network, the short range of frequency band was only selected because the technology allows typically less than 100 kbp or ZigBee troubles in retransmission processing and delaying data tranmission works to create unproductive condition of work. This research was proposed the method, based on short range frequency of zigBee nodes enable to long range of remote data transmission with specific algorithm tools.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Micro Balanced Filter in Magnetically Coupled LC Resonators (자기유도 결합 LC 공진기를 이용한 초소형 평형신호 여파기)

  • Park, Jong-Cheol;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1406-1407
    • /
    • 2008
  • In this paper, a micro balanced filter in magnetically coupled LC resonators is proposed, designed, simulated by using FR-4 PCB substrate for low cost, small volume IEEE 802. 11a wireless LAN application. Two pair of coupled LC resonators using magnetic coupling of embedded inductors are applied to obtain bandpass transmission response and improve their phase and magnitude imbalance characteristics. In addition, high dielectric composite film is applied to fabricate the high Q MIM capacitors with small size and high capacitance density. It has an insertion loss of 1.4 dB, a return loss of 10 dB, a phase imbalance of 0.25 degree, and magnitude imbalance of 0.17 dB at frequency bandwidth of 200 MHz ranged from 5.15 GHz to 5.35 GHz, respectively. The proposed balanced filter has a small volume of $1.1mm{\times}1.3mm{\times}0.6mm$ (height).

  • PDF

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.

Remote Vital Signal Monitoring System Based on Wireless Sensor Network Using Ad-Hoc Routing

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons, and transfer his/her health status wirelessly in Ad-hoc network to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.