• Title/Summary/Keyword: IEEE 802.15.4 Standard

Search Result 156, Processing Time 0.021 seconds

Design of Scheduling Superframe based on IEEE 802.15.4 MAC using LQI (LQI를 이용한 IEEE 802.15.4 MAC 기반의 스케줄링 슈퍼프레임 설계)

  • Chon, Young-Jo;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.159-164
    • /
    • 2016
  • This paper proposes an improved superframe structure with one : N situation of the network as a target for efficiency battery and communication performance used in the existing standard IEEE 702.15.4 MAC layer. The proposed superframe transforms and adds a two structures. First, we add the proposed scheduling interval after the arrival of the beacon. Second, we change to a structure in which one of the contention access period is divided into two. The contention access period and the contention-free access period of active portion are divided according to the LQI value of the device. Through this system-level simulation written by $c{^+^+}$, as a results show that the battery consumption and transmission performance has been increased.

Scheme of Secure IoT based Group communication (확장성과 보안을 보장하는 IoT 디바이스 기반의 그룹통신 기법)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.98-103
    • /
    • 2021
  • In this study, we propose a group communication technique that guarantees security and expandability by configuring a network consisting of IoT terminals equipped with security functions. As the number of devices participating in the network increases, network resources are proportionally reduced, and adding a security function to the IoT device increases the delay time due to encryption in the IoT device. If the error rate that occurs in the network increases, network resources are quickly consumed due to retransmission. Therefore, IoT terminals are grouped to ensure scalability while supporting security, reducing the consumption of network resources even when the number of participating nodes increases, thus ensuring scalability. For the future implementation, the encryption method used in IoT terminals considered the standard of IEEE802.5.4, and the standardization trend was investigated and classified. The proposed method applies IoT devices that provide security functions of the IEEE802.5.4 standard to the group communication base to ensure reliability and scalability. In the performance evaluation, the effectiveness of the proposed method was confirmed by comparing the delay times when grouping IoT devices with security functions through simulation.

Design and Implementation of Container Security Device(CSD) based on IEEE standards 802.15.4b (IEEE 표준 802.15.4b 기반컨테이너 보안장치(CSD) 시스템 구현 및 검증)

  • Lee, Eun-Kyu;Shon, Jung-Rock;Choi, Sung-Pill;Moon, Young-Sik;Kim, Jae-Joong;Choi, Hyung-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1613-1620
    • /
    • 2011
  • CSD is IEEE Stan없rd 802.15.4b based Container Security Device which is proposed by the U.S Department of Home Security. It is mounted inside the container to sense opening of the container door. ConTracer is the CSD which is developed in this research whose major features are sensing door opening status as well as history inquiring on internal environment and shock to the container by mounting the temperature/humidity/shock sensors. Moreover, its RFID frequency bandwidth uses 2.4GHz 10 correspond actively to the radio regulations used by different countries. This. paper introduces the development trend of CSD, compares the ConTracer which is developed thru this research and other company's CSD, and introduces CSD System which is designed and established using ConTracer. Finally, the implemented CSD System is verified by applying the demonstration service to container distribution between Korea and Japan.

Design of BACnet/Zigbee Intrated System (BACnet/Zigbee 통합 시스템의 설계)

  • Kim, Se-Hwan;Park, Dong-Kyu;Hong, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1063-1068
    • /
    • 2008
  • BACnet(Building Automation and Control Networks) is a standard data communication protocol specifically designed for building automation and control systems, BACnet provides six options for data link layer protocols and these six data link layer options can be applied with various wired transmission media. Recently wireless technology prevails in automation area. ZigBee is an IEEE 802.15.4 based standard communication protocol for low-rate wireless personal area networks. In this study, we propose a BACnet over ZigBee model that adopts ZigBee communication channel as a wireless data link layer protocol in a BACnet-based communication network system. The technology proposed in this paper can expand the BACnet application using the advantages of wired and wireless integrated network solution.

A Design of Voice Over Sensor Network (VoSN) Base Station with Multi-Channel Support (다중 채널을 지원하는 Voice over Sensor Network(VoSN) Base Station 설계)

  • Lee, Hoon Jae;Lee, Jae Hyoung;Kang, Min Soo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.90-96
    • /
    • 2014
  • IEEE802.15.4 that is a standard for sensor networks is mainly used the wireless personal area networks such as ZigBee networks and it features low-power, low-speed data communication. However, recently research for interworking sensor network based voice communication and Session Initiation Protocol (SIP) for long-range, multi-user support has been actively conducted. In this paper, we designed a integrated base station based existing systems for interworking sensor networks based voice communication and SIP. We measured number of packet and delay according to increase the number of users to evaluate the performance of designed Base Station.

Design and Implementation of IEEE 802.15.4 Packet Analyzer Based on Embedded Linux (임베디드 리눅스 기반의 IEEE 802.15.4 패킷 분석기 설계 및 구현)

  • Lee, Chang-Woo;Cho, Hyeon-Woo;Ban, Sung-Jun;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1173-1178
    • /
    • 2007
  • Ubiquitous sensor network (USN) is composed of many sensor nodes which are one of the simplest form of embedded system. In developing the sensor network system, a debugging tool is necessary to test and verify the system. Recently, a so-called packet analyzer has been developed for this purpose, and it supports IEEE 802.15.4 which is considered as the standard for the sensor network protocols. The major function of the packet analyzer is to take RF packets from sensor nodes and show the structure and the data of the packets graphically to the user. However, the conventional packet analyzers do not support remote control because they require a USB interface along with a personal computer. To make it available for remote control, we propose a new packet analyzer based on a server-client scheme in which a server program is implemented on embedded Linux and a client program is implemented on Windows for convenient use.

A Fair Contention Channel Assignment Scheme for Emergency data -First-Priority MAC in Wireless Body Area Networks (WBAN에서 응급데이타 퍼스트 우선순위 MAC을 위한 공정한 경쟁 채널 할당 방법)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.995-1002
    • /
    • 2018
  • A Contention Access Period(: CAP) with high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. High-Priority traffic dominates low-priority traffic during CAP depleting low-priority traffic, adversely affecting WBAN throughput, delay, and energy consumption. This paper proposes a Emergency data-First-Priority MAC(: EFP-MAC) superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. As a result, the proposed Emergency data-First Priority MAC(; EFP-MAC) The Simulation results show that the proposed MAC achieves lower energy consumption, higher throughput and low latency than the IEEE 802.15.4 standard.

The Beacon Frame-Based Node Grouping Algorithm for Improving the Performance between MCT devices in the Home Wireless Network (가정 무선 네트워크 내 MCT 디바이스 간 성능 향상을 위한 Beacon frame 기반 노드 그룹화 알고리즘)

  • Kim, Gyu-Do;Kown, Young-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.787-790
    • /
    • 2015
  • Recently, M2M (Machine to Machine) communication is possible the development of MTC (Machine Type Communication) devices becomes active. MCT devices in the form of home appliances have a low power consumption, low cost, short-range wireless communication in wireless home network. For purpose, MTC devices based on IEEE 802.15.4/Zigbee are composed in the form of cluster-tree topology, which consists of one PAN (Personal Area Network), one or other router and end of nodes. It happens that transmission delay, packet drop, and lacking data resulted from collision originated by a competition for allocating channels among MTC devices that greatly increased. At last performance of entire network can be degradated. This paper proposes that the beacon frame-based grouping algorithm using multiple channels in a MTC devices in the presence of wireless home network interference. The proposed algorithm decreases the transmission delay, dropped packet and throughput is more increase, so the proposal algorithm is more efficient than the IEEE 802.15.4/ Zigbee standard.

  • PDF

Power Consumption Analysis of Asynchronous CSL mode MAC in Wi-SUN (Wi-SUN에서 비동기 CSL 모드 MAC의 전력소모 분석)

  • Yoon, Mi-Hee;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.59-63
    • /
    • 2022
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN(Wireless Smart Utility Network) Alliance proposed Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e CSL(Coordinated Sampled Listening) Mode MAC(Media Access Control) in terms of power consumption and looks at considerations for efficient operation. Although CSL-MAC can dramatically reduce power consumption at the receiving end in an asynchronous manner, it has been found that the transmitting end has a disadvantage in that power consumption occurs due to an excessive wake-up sequence.

A LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기)

  • Na, Young-Heon;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1355-1362
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. Our LDPC decoder adopts a block-serial architecture based on min-sum algorithm and layered decoding scheme. A novel way to store check-node values and parity check matrix reduces the sizes of check-node memory and H-ROM. An efficient scheme for check-node memory addressing is used to achieve stall-free read/write operations. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.