• Title/Summary/Keyword: IEEE 802.15.3

Search Result 278, Processing Time 0.031 seconds

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

Power Consumption Analysis by Adjusting of Check Interval in Asynchronous Wireless Sensor Network (비동기 무선센서네트워크에서 체크인터벌 조절에 따른 전력소모 분석)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.91-96
    • /
    • 2019
  • There are so many low power MAC protocols for wireless sensor network. IEEE802.15.4 among them has disadvantage of a large power consumption for synchronization. To save power consumption it use the superframe operation alternating sleep mode and awake mode. But latency is longer result from superframe operation. Typical asynchronous B-MAC can have shorter latency according to check interval. But transmitter consumes more power because of long preamble. And receiver is suffering from overhearing. In this paper, we propose the adaptive check interval scheme of B-MAC for enhancing the power consumption and delay latency performance. Its power consumption is evaluated by comparing the proposed scheme with a typical IEEE802.15.4.

Delay Time Analysis of Asynchronous CSL Mode MAC in Wi-SUN (Wi-SUN에서 비동기 CSL모드 MAC의 지연시간 분석)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.23-28
    • /
    • 2021
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN(Wireless Smart Utility Network) Alliance proposed Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e CSL(Coordinated Sampled Listening) Mode MAC(Media Access Control) in terms of latency and looks at considerations for efficient operation.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

UWB 신호에 의한 실내 무선랜 장치의 전파간섭

  • 최상성;조상인
    • Information and Communications Magazine
    • /
    • v.20 no.2
    • /
    • pp.31-41
    • /
    • 2003
  • UWB 무선기술은 초광대역 특성에 의한 높은 전송속도와 기존의 무선장치들과 상호 간섭영향 없이 주파수를 공유하여 사용할 수 있다는 장점 때문에 새로운 방식의 근거리 무선통신 기술로 급부상되고 있다. 특히 IEEE802.15.3에서 UWB 무선기술을 WPAN으로 사용하기 위한 표준화 작업이 진행되고 있어 현재 가장 널리 사용되고 있는 IEEE802.11 및 Bluetooth 장치와 향후 실내 환경에서 공존할 가능성이 매우 높아지고 있으며 이에 따른 장치 상호간 간섭영향 평가가 요구되고 있다. 본 논문에서는 2.4 GHz 대역 IEEE 802.11b 무선랜 장치를 사용하는 실내 환경에서 UWB 무선장치가 공존할 경우 무선랜 장치의 Packet Failure Rate 및 Throughput 측정을 통해 UWB 신호가 무선랜 장치에 미치는 간섭영향을 분석하였다.

Application of Block Turbo Code for Improving the Performance of 5 ㎓ IEEE 802,11a WLAN System (5 ㎓대 IEEE 802.11a WLAN 시스템의 성능향상을 위한 블록터보코드(Block Turbo Code)의 응용)

  • 김한종;이병남
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • In this paper we apply block turbo coding at the transmitter and iterative decoding algorithm at the receiver for different operating modes, based on the 5 ㎓ IEEE 802.1 la WLAN system, instead of convolutional coding and soft decision viterbi algorithm to improve forward error correcting performance. Experimental results showed that each coding scheme outperforms coding gains of up to 3.5 ㏈ at the BER of 10$\^$-3/.

Power Consumption Analysis of Sensor Node According to Beacon Signal Interval in IEEE 802.15.4 Wireless Star Sensor Network (IEEE 802.15.4 무선 스타 센서 네트워크에서 비콘 신호 주기에 따른 센서 노드 전력소모량 분석)

  • Yoo Young-Dae;Choi Jung-Han;Kim Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.811-820
    • /
    • 2006
  • In this paper, The correlation of the power consumption of sensor node is analyzed according to the analyze parameter in IEEE 802.15.4 star sensor network. And It is studied the influence on analysis parameter. The power consumption of sensor network in transmission process and average transmission power consumption drives to numerical formula. And CSEM WiseNET system measurement value is used. As a simulation result, The power consumption of sensor node in star network consist of 10 sensor nodes is more than 20 % that in single network in average. When beacon signal interval is 0.1 second in all frequency bands, the power consumption of sensor node in up-link is more than 2.5 times that in down-link in average. When beacon signal interval is 1 second and the number of sensor nodes increases to 100 and sensing data increases to 100 byte, the power consumption of sensor node increases to 2.3 times. And The superior performance of 2.4 GHz frequency band has than 868/915 MHz frequency band up to $6{\sim}12$ times.

A study on the Implementation Extended Concept of GTS in IEEE 802.15.4 (IEEE 802.15.4에서 GTS의 확장개념에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Remarkable advances in wireless communication technology have enabled communications among people who are far away from each other. In recent, the needs of local area voice communication using a wireless system based on low-cost and simple hardware are rapidly rising. However, since these applications require that the multi-users communicate on the same wireless channel in a small area, the existing voice technologies are not suitable for directly applying to these applications. Therefore, in this paper I propose a novel idea enabling multi-user voice communication. In particular, as a short range wireless solution, I employ the IEEE 802.15.4 based on low power and low cost. However, since originally the standard is not developed for voice communication, we extend the original scheme to be suitable for the voice communication by utilizing the extended concept of GTS. The capacity and validity of the proposed scheme are evaluated through quantitative analysis in various voice compression rates.

Dynamic Channel-Time Assignments based on the link status in IEEE 802.15.3 High-rate WPAN (IEEE 802.15.3 고속 무선 PAN(Personal Area Network)에서 링크상태에 따른 동적 채널할당)

  • 곽동원;이승형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.844-851
    • /
    • 2004
  • Various types of error are caused due to many factors of various environment in air interface channel of wireless communications. In this case, the reliability of the channel is much lower than that of wired case. IEEE 802.15.3 high-rate WPAN, which operates in an ad hoc networking environment, is more susceptible to such errors. The problem has been investigated for wireless LANs, for example, as follows. If the queue size of a certain node is longer than that of other nodes, the node estimates that its channel state is bad and the resource of the node is decreased. However this method has a disadvantage that a central controller must always monitor the status. To avoid this disadvantage, in this paper, a new MAC protocol that the throughput of overall piconet is increased by LDS (Link-status Dependent Scheduling) is proposed.