• Title/Summary/Keyword: IEEE 802.11b throughput

Search Result 49, Processing Time 0.028 seconds

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN (IEEE 802.11 무선랜의 성능 향상을 위한 Binary Negative-Exponential Backoff 알고리즘)

  • Ki, Hyung-Joo;Choi, Seung-Hyuk;Chung, Min-Young;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1229-1237
    • /
    • 2006
  • IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.

Traffic-Adaptive PCF MAC Scheduling Scheme Based on IEEE 802.11b Wireless LAN (IEEE 802.11b 무선랜에서 트래픽 부하에 따른 적응적인 PCF MAC 스케줄링 기법)

  • 신수영;장영민;강신각
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.191-194
    • /
    • 2003
  • In IEEE 802.11b, Medium Access Control Sublayer consists of DCF (Distributed Coordination Function) and PCF (Point Coordination Function). DCF provides contention based services and PCF provides contention free services for QoS satisfaction. DCF uses CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) as an access protocol. And PCF uses Polling Scheme. In this paper, a modified New-PCF, which gives weights to channels with heavier traffic load, was suggested. NS-2 simulations were conducted to compare the service performances with original DCF, PCF and the modified New-PCF respectively. Simulation results has shown the increased overall throughput with the proposed New-PCF compared with other cases.

  • PDF

A Traffic Management Scheme for Service Differentiation over MANETs (MANETs에서 차등서비스 제공을 위한 트래픽 관리 기법)

  • Kim Kwan-Woong;Bae Sung-Hwan;Kim Dae-Ik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.4 s.107
    • /
    • pp.455-460
    • /
    • 2006
  • Currently, the IETF group is working on service differentiation in the Internet. However, in wireless environments such as Ad-hoc networks, where channel conditions are variable and bandwidth is scarce, the Internet differentiated services are suboptimal without lower layers' support. The IEEE 802.11 standard for Wireless LANs is the most widely used WLAN standard today. 1t has a mode of operation that can be used to provide service differentiation, but it has been shown to perform badly. In this paper, we present a new service differentiation scheme for support QoS in the wireless IEEE 802.11, which is based on a multiple queuing system to provide priority of user's flow. We simulate and analyze the performance of our algorithm and compare its performance with the original IEEE 802.11b protocol. Simulation results show that our approach increases overall throughput in the MAC layer.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

An Efficient PFMIPv6 and WLAN Interworking Scheme for Fast Handover (고속 핸드오버를 위한 PFMIPv6와 무선랜의 효율적인 연동 방안)

  • Park, Min-Ji;Min, Sang-Won;Kim, Bok-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.174-180
    • /
    • 2012
  • As the number of a smart phone user over the world surprisingly grows and a wireless Internet market expands, service requirement of a mobile terminal is increasing. However, because there is no consideration of mobility in the early standard step, it is difficult to expect to improve the service performance in handover procedure. This paper proposes a PFMIPv6 handover scheme by using probe request message and authentication message and by using buffering scheme in IEEE 802.11. In addition, we simulated this proposal scheme and verified that the proposed handover scheme is improved in terms of handover delay, and average FTP throughput during the handover period.

A Multi-Rate Aware Distributed Packet Scheduling in Ad-hoc Networks (에드혹 네트워크에서 다중 데이터률을 고려하는 분산 패킷 스케쥴링)

  • Roh Kwen-Mun;Chen Yong-Qian;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.642-651
    • /
    • 2006
  • In ad-hoc network, the most of existing packet scheduling schemes provides throughput-based fairness. To provide throughput-based fairness, it basically supposes that the channel capacity is fixed. But, the supposing that the channel capacity is fixed is not appropriate because IEEE 802.11b and 802.11g which are normally used for organizing ad-hoc network can provide various data rate according to channel conditions. So, we define time-based fairness for each flow to consider multi-rate and suggest the MRADPS reaching the defined time-based fairness. Simulation result shows that MRADPS improves the total network throughput in ad-hoc network with providing time-based fairness to each flow.

Dual Token Bucket based HCCA Scheduler for IEEE 802.11e (IEEE 802.11e WLAN 위한 이중 리키 버킷 기반 HCCA 스케줄러)

  • Lee, Dong-Yul;Lee, Chae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1178-1190
    • /
    • 2009
  • IEEE 802.11e proposed by IEEE 802.11 working group to guarantee QoS has contention based EDCA and contention free based HCCA. HCCA, a centralized polling based mechanism of 802.11e, needs a scheduling algorithm to allocate the network resource efficiently. The existing standard scheduler, however, is inefficient to support for QoS guarantee for real-time service having VBR traffic. To efficiently assign resource for VBR traffic, in this paper, we propose TXOP algorithm based on dual leaky bucket using average resource allocation and peak resource allocation. The minimum TXOP of each station is obtained by using statistical approach to maximize number of stations of which performance satisfy QoS target. Simulation results show that the proposed algorithm has much higher performance compared with reference scheduler in terms of throughput and delay.

Implementation of IEEE 802.11n MAC using Design Methodology (통합된 구현 방식을 이용한 IEEE 802.11n MAC의 설계)

  • Chung, Chul-Ho;Lee, Sun-Kee;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.360-367
    • /
    • 2009
  • In this paper, we propose a design methodology of IEEE 802.11n MAC which aims to achieve the higher throughput of more than 100Mbps in downlink as measured at the MAC-SAP and present the implementation results of MAC using the proposed design methodology. With our proposed methodology, different from the conventional design flow which has the separate codes for the protocol validation, for the network simulation, and for the system implementation, the unified code can be used for the network simulation and the implementation of software and hardware. Our MAC architecture is partitioned into two parts, Upper-layer MAC and Lower-layer MAC, in order to achieve the high efficiency for the new features of IEEE 802.11n standard. They are implemented in software and hardware respectively. The implemented MAC is tested on ARM based FPGA board.

Does Higher Datarate Perform Better in IEEE 802.11-based Multihop Ad Hoc Networks?

  • Li, Frank Y.;Hafslund, Andreas;Hauge, Mariann;Engelstad, Paal;Kure, Oivind;Spilling, Pal
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.282-295
    • /
    • 2007
  • Due to the nature that high datarate leads to shorter transmission range, the performance enhancement by high datarate 802.11 WLANs may be degraded when applying high datarate to an 802.11 based multihop ad hoc network. In this paper, we evaluate, through extensive simulations, the performance of multihop ad hoc networks at multiple transmission datarates, in terms of the number of hops between source and destination, throughput, end-to-end delay and packet loss. The study is conducted based on both stationary chain topology and mesh topologies with or without node mobility. From numerical results on network performance based on chain topology, we conclude that there is almost no benefit by applying the highest datarate when the chain length is 6 hops or more. With node mobility in mesh topology, the benefit of using high datarate diminishes at even shorter number of hops. To explore the main reasons for this behavior, analyses on multihop end-to-end throughput and network k-connectivity have been conducted later in the paper, and correspondingly an auto-rate adaptation algorithm has been proposed.