• Title/Summary/Keyword: IEEE 802.11a

Search Result 1,114, Processing Time 0.026 seconds

A Generalized Markov Chain Model for IEEE 802.11 Distributed Coordination Function

  • Zhong, Ping;Shi, Jianghong;Zhuang, Yuxiang;Chen, Huihuang;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.664-682
    • /
    • 2012
  • To improve the accuracy and enhance the applicability of existing models, this paper proposes a generalized Markov chain model for IEEE 802.11 Distributed Coordination Function (DCF) under the widely adopted assumption of ideal transmission channel. The IEEE 802.11 DCF is modeled by a two dimensional Markov chain, which takes into account unsaturated traffic, backoff freezing, retry limits, the difference between maximum retransmission count and maximum backoff exponent, and limited buffer size based on the M/G/1/K queuing model. We show that existing models can be treated as special cases of the proposed generalized model. Furthermore, simulation results validate the accuracy of the proposed model.

An Efficient Scheduling Scheme based on Fuzzy Prediction for IEEE 802.11e WLAN (IEEE 802.11e WLAN을 위한 효율적인 퍼지 예측 기반 스케줄링 방법)

  • Heo, Jong-Man;Lee, Kam-Rok;Kim, Nam-Hun;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1045-1046
    • /
    • 2006
  • The IEEE 802.11e medium access control (MAC) is an emerging standard to support Quality of Service (QoS). A HCCA (HCF controlled channel access) scheduler of the standard IEEE 802.11e is only efficient for flows with strict constant bit rate (CBR) characteristics. In this paper, we propose a new HCCA scheduling scheme that aims to be efficient for both CBR and VBR flows. The proposed scheme uses fuzzy queue length predictions to tune its time allocation to stations. We present a set of simulations and provide performance comparisons with the reference HCCA scheduler.

  • PDF

Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions

  • Xu, Changchun;Gao, Jingdong;Xu, Yanyi;He, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.683-701
    • /
    • 2012
  • IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows.

Enhanced EDCF Algorithm Supporting Fair Transmissions in IEEE 802.11 WLAN (IEEE 802.11e 무선 LAN에서 공평성 있는 전송을 지원하는 Enhanced EDCF 알고리즘)

  • Kim Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1647-1653
    • /
    • 2004
  • In a contention-based wireless LAN protocol, maximization of channel utilization and fair bandwidth allocations are main topics to deal with. But it is very difficult to achieve these two goals simultaneously. Many studies have been done to achieve these goals. In this paper we propose a control mechanism to support fair transmissions among traffic classes in IEEE 802.11e Wireless LAN. The proposed algorithm uses short-term and long-term transmission times of each traffic classes to control their $CW_{min}$ for fairness. The proposed algorithm don't need to know the exact number of nodes in the networks to support fairness as other studies do. Furthermore any modifications in AP and mobile hosts are not required.

An Area-efficient Implementation of Layered LDPC Decoder for IEEE 802.11n WLAN (IEEE 802.11n WLAN 표준용 Layered LDPC 복호기의 저면적 구현)

  • Jeong, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.486-489
    • /
    • 2010
  • This paper describes a layered LDPC decoder which supports block length of 1,944 bits and code rate 1/2 for IEEE 802.11n WLAN standard. To reduce the hardware complexity, the min-sum algorithm and layered architecture is adopted. A novel memory reduction technique suitable for min-sum algorithm reduces memory size by 75% compared with conventional method. The designed processor has 200,400 gates and 19,400 bits memory, and it is verified by FPGA implementation. The estimated throughput is about 200 Mbps at 120 MHz clock by using Xilinx Virtex-4 FPGA device.

  • PDF

An Analytical Model for GTS Service Delay of IEEE 802.15.4 with Two Priority Queues (두 개의 우선순위 큐를 적용한 IEEE 802.15.4 GTS 서비스 지연에 대한 분석적 모델)

  • Lee, Kang-Woo;Shin, Youn-Soon;Ahn, Jong-Suk
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.419-428
    • /
    • 2008
  • IEEE 802.15.4 reserves transmission time to support real-time transport by sending GTS request packets to the PAN coordinator in advance. This paper introduces GTS-FAT technique to reduce the reservation time by giving a higher sending priority to GTS request packets than data packets. Differently from the conventional scheme where these two kinds of packets share a single transmission queue, GTS-FAT scheme allocates two queues with two different contention window sizes like IEEE 802.11e. This paper also proposes an analytical GTS delay model by combining the two legacy models for 802.15.4 and 802.11e to accurately predict the GTS-FAT delay over a given network topology. Our analysis shows that GTS-FAT reduces GTS service delay by up to 50% at the expense of the data delay by only up to 6.1% when GTS request packets four times outnumber data packets.

Design of a broadband(2㎓-5.8㎓) FET Switch Using Impedance Transformation Network (임피던스 변환회로를 이용한 광대역(2㎓-5.8㎓) FET 스위치 설계)

  • 노희정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2004
  • This paper describes the design and the simulation of a single pole double throw(SPDT) FET switch for wireless LAN(IEEE802.11a & IEEE802.11b) applications using drain impedance transformation network with Microstrip transmission line. At the receiving path insertion losses were from 0.8(㏈) to 1.462(㏈) between 2(㎓) and 4(㎓), from l.26(㏈) to 2.3(㏈) between 4.7(㎓) and 6.7(㎓) and the isolations were under 30(㏈) between 2(㎓) and 6.7(㎓). At the transmitting path insertion loss were from 1.18(㏈) to 2.87(㏈) between 2(㎓) and 4(㎓) from 0.625(㏈) to 1.2(㏈) between 4.7(㎓) and 6.7(㎓) and the isolations were under 30(㏈) between 2(㎓) and 6.7(㎓).

Performance Improvement of Space-Time OFDM System with Concatenated Codes (연접부호를 적용한 시공간 OFDM 시스템의 성능 개선)

  • 서완우;정연호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.541-546
    • /
    • 2004
  • Space-Time Coding(STC) is a technique that utilizes joint correlation of transmitted signals in both time and space domains. Through this approach, diversity and coding gains can be simultaneously obtained. In this paper, we use SPW simulation tool to implement the IEEE 802.11a system. Based on this system, OFDM system with STC and convolutional coder concatenated is implemented. The system performance is analyzed and compared with the performance of the IEEE 802.11a system. The simulation results show that the performance with concatenated codes at a data rate of 6Mbps shows approximately a 5dB gain over the system with the convolutional code only. At a data rate of 12Mbps, the performance with concatenated codes is further improved by approximately 6dB.

Search of Beacon in Low Power Wireless Interface (저전력 무선접속에서 비콘 탐색)

  • Song, Myong-Lyol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.365-372
    • /
    • 2007
  • In IEEE 802.11b wireless network, stations synchronize themselves to the beacons periodically sent by the access point(AP) when they are running in low power mode. In case of missing beacon due to noise or traffic from neighboring wireless network stations must be awake until they get the next beacon, which causes energy consumption in stations. In this paper, we propose a scheme searching next beacon consuming little energy. The problems of missing beacon in low power mode of IEEE 802.11b wireless interface are described and a new method to reduce energy consumption is proposed. The proposed method is simulated with the network simulator, ns2, and compared with the low power mode of the IEEE 802.11b. The result measured in terms of station's wakeup time shows some enhancement in energy consumption when some errors occur in receiving frames.

Hybrid MAC Protocol for Improving Performance of IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜의 성능 향상을 위한 하이브리드 MAC 프로토콜)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2015
  • The DCF (Dcistributed Coordination Function) and PCF (Point Coordination Function) are the basic MAC (Medium Access Control) protocols of IEEE 802.11 wireless LANs. According to the DCF, each node performs the exponential backoff algorithm before the transmission of its data frame. Each node doubles the backoff waiting time before the transmission of its data frame whenever it detects the transmission collision with other nodes. Therefore, as the number of the active nodes having the data frames to transmit increases, the overall MAC performance of the DCF decreases. On the other hand, according to the PCF, each node is granted the transmission opportunity by which the PCF transmission is possible without the collision with other nodes. Therefore, as the number of the active nodes increases, the MAC performance of the PCF increases, In this paper, considering the tradeoff of MAC performance between the DCF and PCF, a hybrid MAC protocol is proposed to enhance the performance of IEEE 802.11 wireless LANs.