• Title/Summary/Keyword: IEEE 802.11 WLANs

Search Result 86, Processing Time 0.025 seconds

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Delay Analysis under Dynamic Traffic in Network (IEEE 802.11무선망에서 기회적 채널 전환을 통한 다중사용자 다이버시티 이득 향상)

  • Hahm, Seong-Il;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • Channel diversity is exploited to increase multiuser diversity gains in IEEE 802.11 WLANs. To this end, we propose an opportunistic channel switching method and evaluate this with different number of stations, number of channels, switching latency, and the average channel condition of stations.

Access Point Selection Algorithm for Densely Deployed IEEE 802.11 WLANs (IEEE 802.11 무선랜 환경에서의 AP 선택 알고리즘)

  • Kim, Gyul;Lee, SuKyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.707-713
    • /
    • 2016
  • In the IEEE 802.11 Wireless LAN environment, the common Access Point (AP) selection of the existing terminal is based on signal strength. However, the signal strength-based AP selection method does not ensure an optimal data rate. Recently, several AP selection methods to solve this problem have been suggested. However, when we select AP, these have a latency problem and don't consider dense environments of AP. In this paper, we confirm the problem of the conventional AP selection about the signal strength and the throughput through the actual measurement, and propose algorithm that selects AP by scoring link speed and wireless round trip time to compensate the problem. Furthermore, the proposed AP selection algorithm through the actual experiment proves the improved performance as compared with the existing methods.

Available Bandwidth Measurement Method Considering Idle Period and Transmission Overheads in IEEE 802.11b DCF Wireless LANs (IEEE 802.11b DCF 무선랜 환경에서 휴지 기간과 전송 오버헤드를 고려한 가용대역폭 측정 방법)

  • Koo, Hye-Lim;Ha, Sang-Yong;Ryu, Ki-Yeol;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.780-788
    • /
    • 2011
  • The lack of QoS (Quality of Service) support functionalities in IEEE 802.11 DCF mode makes it difficult to provide real-time multimedia services in WLANs. In this paper, we propose an effective available bandwidth measurement method in IEEE 802.11b DCF environments. The proposed method measures the total channel idle time and the collision probability during each measurement period. Then, the available bandwidth is calculated by considering those measured information and the transmission overheads at MAC and PRY layers. The performances of the proposed method are evaluated using OPNET simulator. The simulation results show that the proposed method provides more exact results than existing comparable schemes.

A Survey on Admission Control Mechanisms for providing QoS in the IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 QoS 제공을 위한 허가 제어 연구)

  • Lee, Kye-Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.535-538
    • /
    • 2005
  • Wireless LANs based on the IEEE 802.11 standard are widely spread for use nowadays. Traffic which are conveyed over the WLANs change rapidly from normal data such a Email and Web pages, to multimedia data of high resolution video and voice. To meet QoS (Quality of Service) required by these multimedia traffic, the IEEE 802 committee recently has developed a new standard, IEEE 802.11e. IEEe 802.11.e contains two MAC mechanisms for providing QoS: EDCA(Enhanced Distributed Channel Access) and HCCA (HCF Controlled Channel Access). Using these standardized MAC mechanisms as a building platform, various admission control mechanisms can be combined to offer QoS gurantees for multimedia traffic. This paper surveys these research efforts.

  • PDF

A Study on QoS-aware Wirelss LAN Protocols Adapting Channel Condition Variations (채널 특성 변화에 적응하며 QoS 보장이 가능한 무선 랜 프로토콜 연구)

  • Lee, Kye-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.245-248
    • /
    • 2005
  • Wireless LANs based on the IEEE 802.11 standard are widely spread for use nowadays. Traffic which are conveyed over the WLANs change rapidly from normal data such as Email and Web pages, to multimedia data of high resolution video and voice. To meet QoS (Quality of Service) required by these multimedia traffic, the IEEE 802 committee recently has developed a new standard, IEEE 802.11e. Current IEEE 802.11e, however, is not sufficient to support service differentiations and network performance enhancements, under a varying network environment experiencing as varying channel characteristics and high network loads. Recently, there have been much research to complement this deficiency of 802.11e standard. This paper surveys these research efforts.

  • PDF

The IEEE 802.11 MAC Protocol to solve Unfairness Problem in Multihop Wireless Ad Hoc Networks (다중 무선 에드혹 네트워크에서 불공정 문제를 해결하기 위한 802.11 MAC 프로토콜)

  • Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.229-234
    • /
    • 2007
  • In the IEEE 802.11 Wireless Local Area Networks (WLANs), network nodes experiencing collisions on the shared channel need to backoff for a random period of time. which is uniformly selected from the Contention Window (CW) This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. The BEB scheme suffers from a unfairness problem and low throughput under high traffic load. In this paper, I propose a new backoff algorithm for use with the IEEE 802.11 Distributed Coordination Function.

  • PDF

The IEEE 802.11 MAC Protocol to solve Unfairness Problem in Multihop Wireless Ad Hoc Networks (다중 무선 에드혹 네트워크에서 불공정 문제를 해결하기 위한 802.11 MAC 프로토콜)

  • Nam, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.91-94
    • /
    • 2007
  • In the IEEE 802.11 Wireless Local Area Networks (WLANs), network nodes experiencing collisions on the shared channel need to backoff for a random period of time, which is uniformly selected from the Contention Window (CW). This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. The BEB scheme suffers from a fairness problem and low throughput under high traffic load. In this paper, I propose a new backoff algorithm for use with the IEEE 802.11 Distributed Coordination Function.

  • PDF

A Sender-oriented Automatic Rate Adaptation Scheme in IEEE 802.11 WLANs (IEEE 802.11 WLAN에서 송신단 기반 전송률 적응기법)

  • Lee, Sun-Hun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.143-152
    • /
    • 2009
  • IEEE 802.11 WLANs provide multiple transmission rates to improve the system throughput by adapting the transmission rate to the current wireless channel conditions. Many rate adaptation schemes have been proposed because IEEE 802.11 standard does not contain any specifications for the rate adaptation scheme. In this paper, in order to overcome limitations of the previous research, we propose a new rate adaptation scheme called SARA(Sender-oriented Automatic Rate Adaptation). The SARA scheme, a proposed rate adaptation scheme, appropriately adjusts the data transmission rate based on the estimated wireless channel conditions, specifically the measured RSSI at the sender-side. Moreover it continuously updates the thresholds for selecting the transmission rate and selectively enforces the RTS/CTS exchanges to adapt the changes in the wireless channel conditions. Through the performance evaluations, we prove that the SARA scheme overcomes the limitations of the previous research and improves the wireless link utilization.

A Contention Window Adjustment Algorithm for Improving Fairness between Uplink and Downlink in IEEE 802.11 WLANs (IEEE 802.11 무선랜의 업링크와 다운링크간 공평성 향상을 위한 Contention Window 조절 알고리즘)

  • Lim, Wan-Seon;Kim, Dong-Wook;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.329-336
    • /
    • 2011
  • This paper addresses the fairness issue between uplink and downlink traffic in IEEE 802.11 WLANs. Some solutions in existing work try to solve this issue by giving smaller minimum contention window (CWmin) value to an AP compared to stations. In contrast to the existing solutions, a proposed algorithm in this paper aims at finding CWmin values that not only provides fairness between uplink and downlink traffic among stations but also achieves high throughput. For this, in the proposed algorithm, an AP checks the number of stations that have uplink and downlink traffic, respectively. Based on this information, the AP calculates optimal CWmin values and announces it to stations. Our simulation results show that the proposed algorithm outperforms existing algorithms in terms of fairness and throughput.