• 제목/요약/키워드: IEEE 802.11 Networks

Search Result 364, Processing Time 0.021 seconds

eMCCA: An Enhanced Mesh Coordinated Channel Access Mechanism for IEEE 802.11s Wireless Mesh Networks

  • Islam, Md. Shariful;Alam, Muhammad Mahbub;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.639-654
    • /
    • 2011
  • In this paper, we present a channel access mechanism, referred to as the enhanced mesh coordinated channel access (eMCCA) mechanism, for IEEE 802.11s-based wireless mesh networks. The current draft of IEEE 802.11s includes an optional medium access control (MAC), denoted as MCCA, which is designed to provide collision-free and guaranteed channel access during reserved periods. However, the MCCA mechanism fails to achieve the desired goal in the presence of contending non-MCCA nodes; this is because non-MCCA nodes are not aware of MCCA reservations and have equal access opportunities during reserved periods. We first present a probabilistic analysis that reveals the extent to which the performance of MCCA may be affected by contending non-MCCA nodes. We then propose eMCCA, which allows MCCA-enabled nodes to enjoy collision-free and guaranteed channel access during reserved periods by means of prioritized and preemptive access mechanisms. Finally, we evaluate the performance of eMCCA through extensive simulations under different network scenarios. The simulation results indicate that eMCCA outperforms other mechanisms in terms of success rate, network throughput, end-to-end delay, packet-loss rate, and mesh coordinated channel access opportunity-utilization.

Modeling and Analyzing Per-flow Throughput in IEEE 802.11 Multi-hop Ad Hoc Networks

  • Lei, Lei;Zhao, Xinru;Cai, Shengsuo;Song, Xiaoqin;Zhang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4825-4847
    • /
    • 2016
  • In this paper, we focus on the per-flow throughput analysis of IEEE 802.11 multi-hop ad hoc networks. The importance of an accurate saturation throughput model lies in establishing the theoretical foundation for effective protocol performance improvements. We argue that the challenge in modeling the per-flow throughput in IEEE 802.11 multi-hop ad hoc networks lies in the analysis of the freezing process and probability of collisions. We first classify collisions occurring in the whole transmission process into instantaneous collisions and persistent collisions. Then we present a four-dimensional Markov chain model based on the notion of the fixed length channel slot to model the Binary Exponential Backoff (BEB) algorithm performed by a tagged node. We further adopt a continuous time Markov model to analyze the freezing process. Through an iterative way, we derive the per-flow throughput of the network. Finally, we validate the accuracy of our model by comparing the analytical results with that obtained by simulations.

Modeling of the Distributed Broadcasting in IEEE 802.11p MAC Based Vehicular Networks (IEEE 802.11p MAC 기반 차량 네트워크에서의 분산된 브로드캐스팅 모델링)

  • Jeong, Daein
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.924-933
    • /
    • 2013
  • In this paper, we propose a modeling of the broadcasting in the IEEE 802.11p MAC protocol for the VANET(Vehicular Ad hoc Networks). Due to the fact that the beacon message which is needed for the safety services is shared via broadcasting, the analytical modeling of the broadcasting is crucial for the optimum design of the services. Two characteristics specific to the IEEE 802.11p are reflected in the modeling; the time limited CCH interval caused by the channel switching between the CCH and SCH, and no retransmission of the broadcasted messages. In the proposal, we assumed no restriction on the moment of generation of the beacon messages. We allow the messages to be generated and broadcasted within the whole CCH interval. Simulation results prove the accuracy of the proposed modeling. Noticeable improvements are also observed in terms of the performance indices such as the successful delivery ratio, transmission delay, and the variation of the delay.

A Buffer Management Scheme for Multi-hop Traffic in IEEE 802.11 based Mesh Networks (IEEE 802.11 기반 메쉬 네트워크에서 다중 홉 트래픽을 위한 버퍼 관리 방식)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.455-462
    • /
    • 2009
  • In this paper, we propose a buffer management scheme for decreasing the packet loss due to buffer overflow and improving the packet fairness between nodes in IEEE 802.11 based multi-hop mesh networks. In the proposed scheme, each mesh router that is an intermediate node receives fairly packet sent from neighboring mesh routers and mobile nodes, and it improves the reception ratio of multi-hop traffic of neighboring mesh routers. Therefore, the proposed scheme can reduce transmission delay and energy consumption. In order to improving the packet loss and the packet fairness, the proposed scheme uses the modified RTS/CTS under the IEEE 802.11 MAC protocol and reduces the packet loss by recognizing the packet size to send to the destination in advance. By using the simulation, we evaluated the proposed scheme in terms of the packet loss ratio and the number of received packet in each mesh router, and compare it to a traditional scheme.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.

Experimental Study on Performance Evaluation of the IEEE 802.15.4 MAC Protocol (IEEE 802.15.4 MAC 프로토콜의 성능 평가 및 실험)

  • Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2007
  • In spite of the large interest in the 802.15.4 standard, no realistic experimental research of its behaviour exists to date except a few works by simulations and analytical modeling. In this paper, we have established realistic environment of IEEE 802.15.4 network and analyze its behaviour under various conditions as like 1) maximum throughput of 802.15.4 MAC, 2) MAC fairness. and 3) throughput and m rate under co-existence of 802.11 Wi-Fi wireless networks.

A Survey on IEEE 802.11 Standardization for Supporting Emergency Services in WLANs (무선랜에서 긴급 서비스 지원을 위한 IEEE 802.11 표준 동향)

  • Lee, Kye-Sang;Jung, Ok-Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.456-458
    • /
    • 2010
  • VoIP services are growing fast and WLAN VoIP phones are being used in widespread. Emergency services are very critical in WLAN VoIP as in other traditional networks. This paper summarize recent standards of IEEE 802.11 supporting emergency services in WLANs. Two standards are discussed. The 11u deals with the aspect of access in WLAN emergency services, and the 11v deals with the location services.

  • PDF

A Multi-Channel Scheduling MAC (MCS-MAC) Protocol for Wi-Fi Mesh Networks (Wi-Fi 메쉬 네트워크를 위한 다중 채널 스케줄링 MAC (MCS-MAC) 프로토콜)

  • Wu, Ledan;Yang, Jae-Young;Zhou, Yafeng;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.54-62
    • /
    • 2012
  • A Wi-Fi mesh network providing multi-hop wireless connections based on IEEE 802.11 PHY/MAC technology has recently received a significant attention as a network infrastructure that interconnects RFID systems and wireless sensor networks (WSNs). However, the current IEEE 802.11 contention-based MAC protocol cannot fully utilize the network capacity due to eithor frame collisions or unused network resources. In this paper, we propose a novel multi-channel scheduling MAC (MCS-MAC) protocol for Wi-Fi mesh networks. Under the secondary interference model of Wi-Fi mesh networks, the MCS-MAC protocol can maximize the network throughput via activation of collision-free links that has a maximal link weight. Through the simulations, we show that the throughput of the MCS-MAC protocol is at least three times higher than that of existing MAC protocols in Wi-Fi mesh networks.

Traffic-Aware TXOP adjusting Algorithm for IEEE 802.11e Network (IEEE 802.11e에서 전송흐름을 고려한 TXOP 조정 알고리듬)

  • Joung, Soo-Kyoung;Kim, Nam-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • This paper proposes a traffic-aware TXOP adjustment algorithm for the IEEE 802.11e networks. In the proposed algorithm the access point (AP) monitors the network traffics periodically and adjusts the TXOP value of the non-QoS traffic in order to improve the network throughput while maintaining the QoS of video and voice applications. The experimental results show that the proposed algorithm outperforms the legacy IEEE 802.11e in terms of the throughput and the fairness.

A Simulation Study on the Performance of the RAW in IEEE 802.11ah WLANs (IEEE 802.11ah WLAN환경에서 모의실험을 통한 RAW 성능 분석)

  • Jin, Sunggeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • Restricted Access Window (RAW) has been designed to improve power saving efficiency by reducing collisions of contending stations in the IEEE 802.11ah Wireless Local Area Networks (WLANs). We conduct simulations in order to observe the stations' operations influencing the lengths of the Restricted Access Window (RAW). From the observation, we consider how to adjust the stations' operations for proper RAW managements.