• Title/Summary/Keyword: IEEE 802.11 MAC Access Control

Search Result 132, Processing Time 0.025 seconds

Efficient Delivery of Multimedia Traffic Using Muti-rate Transmission of 802.11e HCCA MAC Protocol (IEEE 802.11e HCCA MAC의 다중 전송률을 이용한 멀티미디어 트래픽의 효율적 전송)

  • Kim, Young-Hwan;Suk, Jung-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.192-198
    • /
    • 2008
  • In this paper, we propose a scheme that improves the transmission performance of realtime multimedia data in wireless Local Area Network (LAN) environment, through the dynamical control of Transmission Opportunity (TXOP) period of the IEEE 802.11e HCCA Medium Access Control (MAC). The existing schedulers which determine the frame transmission time and its duration could not appropriately cope with the change of physical transmission rate, since the TXOP period has remained unchanged with the change of transmission rate of the wireless station. Our scheme is devised to keep the transmission performance of real-time multimedia data effectively unchanged by making TXOP period be extended when the transmission rate gets reduced. The proposed scheme is experimented along with IEEE 802.11e reference model using NCTUns simulator, which shows that the multimedia data is effectively delivered with the change of transmission rate as the distance between the wireless station and its access point increases.

WBAN MAC Protocols- Non-Saturation Modeling and Performance Analysis

  • Khan, Pervez;Ullah, Niamat;Kim, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1462-1476
    • /
    • 2017
  • The current literature on discrete-time Markov chain (DTMC) based analysis of IEEE 802.15.6 MAC protocols for wireless body area networks (WBANs), do not consider the ACK timeout state, wherein the colliding nodes check the ill fate of their transmissions, while other contending nodes perform backoff check that slot as usual. In this paper, our DTMC model accurately captures the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism of IEEE 802.15.6 medium access control (MAC) and allows the contending nodes performing backoff to utilize the ACK timeout slot during collisions. The compared rigorous results are obtained by considering a non-ideal channel in non-saturation conditions, and CSMA/CA parameters pertaining to UWB PHY of IEEE 802.15.6 MAC protocols.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

Efficient Polling Scheme for Multiple Direct Link Communication Between STAs in Infrastructure Mode IEEE 802.11 Wireless LANs (Infrastructure Mode IEEE 802.11 무선랜 시스템에서 단말간의 다중 직접 통신을 위한 효율적인 폴링 방식)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.237-245
    • /
    • 2007
  • In this paper, a modified PCF (Point Coordination Function) MAC (Medium Access Control) Protocol is proposed to support the multiple direct link communication between STAs (STAtions) in infrastructure mode IEEE 802.11 wireless LANs. By the proposed MAC protocol, the direct link communication between STAs, which are located within the communication range of each other, is allowed without the use of AP (Access Point) as a relay. Moreover, when multiple direct data communication between STAs can be simultaneously performed with a sufficiently small interference, multiple simultaneous direct link communication is allowed for the efficient use of radio bandwidth. AP polls STAs to grant the transmission opportunities using the direct link communication by transmitting the polling frames to STAs. An efficient polling method for granting the transmission opportunities to STAs is proposed to reduce the number of the polling frame transmissions and enhance the PCF MAC performance.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

Materialize of the IEEE802.11 MAC for Wireless Local Area Network (Wireless Local Area Network 의 IEEE802.11 MAC 의 구현)

  • 홍두의;김언곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.177-181
    • /
    • 2004
  • It is as research about embodiment of MAC algorithm that is point of wireless LAN technology that is radio skill that is receiving present head of a family footlights, and embodied MAC that is algorithm that control modem Rf and host interface to level that existent common use radio AP and send-receive of high speed are available that embody function that is presented to IEEE 802.11 specs using H/W and S/W. When embody actually, tested module that embody actually using module modem and RF part because test is impossible after have common use product. Also, module that embody actually designed, and is expected to be utilized in radio LAN system construction of high speed late considering CRC and FCS ewer on channel.

  • PDF

Implementation of Adaptive MCS in The IEEE 802.11ac/ad Wireless LAN (IEEE 802.11ac/ad 무선 LAN의 적응형 MCS 구현 연구)

  • Lee, Ha-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1613-1621
    • /
    • 2015
  • This paper analyzes the rate adaptation scheme and suggests applicable strategy of the MCS(Modulation and Coding Scheme) for improving DCF throughput in the IEEE 802.11ad and 802.11ad wireless LAN. IEEE 802.11ac and 802.11ad wireless LAN provide MCS technique that dynamically adjusts modulation level and code rate to the time-varying channel conditions in order to obtain considerably high data rates. But these standards did not provide rate adaptation algorithm, so this paper surveyes rate adaptation algorithm and suggests MCS scheme applied to IEEE 802.11ac and 802.11ad wireless LAN. Specially A MAC(Medium Access Control) layer throughput is evaluated over error-prone channel in the IEEE 802.11ac-based wireless LAN. In this evaluation, DCF (Distributed Coordination Function) protocol and A-MPDU (MAC Protocol Data Unit Aggregation) scheme are used. Using theoretical analysis method, the MAC saturation throughput is evaluated with the PER (Packet Error Rate) on the condition that the number of station, transmission probability, the number of parallel beams and the number of frames in each A-MPDU are variables.

Design and Implementation of MAC Protocol for Wireless LAN (무선 LAN MAC 계층 설계 및 구현)

  • 김용권;기장근;조현묵
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.253-256
    • /
    • 2001
  • This paper describes a high speed MAC(Media Access Control) function chip for IEEE 802.11 MAC layer protocol. The MAC chip has control registers and interrupt scheme for interface with CPU and deals with transmission/reception of data as a unit of frame. The developed MAC chip is composed of protocol control block, transmission block, and reception block which supports the BCF function in IEEE 802.11 specification. The test suite which is adopted in order to verify operation of the MAC chip includes various functions, such as RTS-CTS frame exchange procedure, correct IFS(Inter Frame Space)timing, access procedure, random backoff procedure, retransmission procedure, fragmented frame transmission/reception procedure, duplicate reception frame detection, NAV(Network Allocation Vector), reception error processing, broadcast frame transmission/reception procedure, beacon frame transmission/reception procedure, and transmission/reception FIEO operation. By using this technique, it is possible to reduce the load of CPU and firmware size in high speed wireless LAN system.

  • PDF

Lightweight Packet Authentication for Access Control in IEEE 802.11 (IEEE 802.11에서의 접근 제어를 위한 Lightweight 패킷 인증)

  • Lee, Keun-Soon;Kim, Hyo-Jin;Song, Joo-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.29-38
    • /
    • 2005
  • Because IEEE 802.11 has several security vulnerabilities, IEEE 802.11i was proposed and accepted. But IEEE 802.11i has much overhead for most of users for the web surfing. Besides not only node the authentication but also the packet authentication is needed to communicate. Although IEEE 802.11i uses TKIP(Temporal Key integrity Protocol) and CCMP(CTR with CBC-MAC Protocol), they have a lot of overheads. In this paper, Lightweight Packet Authentication(LIPA) is proposed. LIPA has less overhead and short delay so that it can be affordable for simple web-surfing which does not need stronger security. After comparing performances of LIPA with those of TKIP and CCMP, LIPA is more efficient than other schemes for transmitting packets.

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF