• Title/Summary/Keyword: IEEE 802

Search Result 2,718, Processing Time 0.033 seconds

The Design of a Structure of Network Co-processor for SDR(Software Defined Radio) (SDR(Software Defined Radio)에 적합한 네트워크 코프로세서 구조의 설계)

  • Kim, Hyun-Pil;Jeong, Ha-Young;Ham, Dong-Hyeon;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.188-194
    • /
    • 2007
  • In order to become ubiquitous world, the compatibility of wireless machines has become the significant characteristic of a communication terminal. Thus, SDR is the most necessary technology and standard. However, among the environment which has different communication protocol, it's difficult to make a terminal with only hardware using ASIC or SoC. This paper suggests the processor that can accelerate several communication protocol. It can be connected with main-processor, and it is specialized PHY layer of network The C-program that is modeled with the wireless protocol IEEE802.11a and IEEE802.11b which are based on widely used modulation way; OFDM and CDM is compiled with ARM cross compiler and done simulation and profiling with Simplescalar-Arm version. The result of profiling, most operations were Viterbi operations and complex floating point operations. According to this result we suggested a co-processor which can accelerate Viterbi operations and complex floating point operations and added instructions. These instructions are simulated with Simplescalar-Arm version. The result of this simulation, comparing with computing only one ARM core, the operations of Viterbi improved as fast as 4.5 times. And the operations of complex floating point improved as fast as twice. The operations of IEEE802.11a are 3 times faster, and the operations of IEEE802.11b are 1.5 times faster.

Adaptive Minimum Sleep Window Algorithm for Saving Energy Consumption in IEEE 802.16e (IEEE 802.16e에서의 에너지 절약을 위한 적응적 최소 수면 구간 결정 알고리즘)

  • Jung, Woo-Jin;Lee, Tae-Jin;Chung, Yun-Won;Chung, Min-Young
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2008
  • IEEE 802.16e has adopted sleep mode to minimize energy consumption of mobile nodes with high speed mobility. If the Base Station (BS) has no data to be sent to a Mobile Subscriber Station (MSS) at the instant of ending sleep window of the MSS, the MSS increases its sleep window interval by double until the window interval reaches to the maximum sleep window interval. Thus, during the operation of sleep mode, MSS repeatedly performs switch on/off action until there exist frames to be received from BS. The switch on/off operation significantly consumes energy of MSS. To effectively deal with the energy of the MSS, this paper proposes an algorithm which decides the minimum sleep window interval that will be used in next sleep mode based on the current sleep window interval. We evaluate the performance of IEEE 802.16e sleep mode algorithm and our proposed algorithm in terms of energy consumption and blocking probability. Compared with the current sleep mode algorithm used in IEEE 802.16e, the proposed algorithm decreases the energy consumption by about 30% without increasing blocking probability.

  • PDF

Enhanced Cross-Layering Mobile IPv6 Fast Handover over IEEE 802.16e Networks in Mobile Cloud Computing Environment (모바일 클라우드 컴퓨팅 환경에서 IEEE 802.16e 네트워크에서의 향상된 교차계층 Mobile IPv6 빠른 핸드오버 기법)

  • Lee, Kyu-Jin;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.45-51
    • /
    • 2010
  • The main issue in mobile cloud computing is how to support a seamless service to a mobile mode. Mobile IPv6 (MIPv6) is a mobility supporting protocol which is standardized by the Internet Engineering Task Force (IETF). Mobile IPv6 fast handovers (FMIPv6) is the extension of MIPv6 which is proposed to overcome shortcomings of MIPv6. Recently, fast handovers for Mobile IPv6 over IEEE 802.16e which is one of broadband wireless access systems has been proposed by the IETF. It was designed for supporting cross-layer fast handover. In this paper, we propose an enhanced cross-layering mobile IPv6 fast handover over IEEE 802.16e networks. In our scheme, a new access router generates a new address for the mobile node by using a layer 2 trigger. We utilize a layer 2 message which is sent from a new base station to the new access router in order to inform the new access router of information of the mobile node. A previous access router sends a binding update message to the mobile node's home agent when it acquires the new address of the mobile node. We evaluate the performance of the proposed scheme compared with the existing schemes in terms of the signaling cost and the handover latency. From the results, we observe that the proposed scheme can support fast handover effectively over IEEE 802.16e networks than existing schemes.

Implementation of a Mesh Router Supporting Multi-path Routing based on IEEE 802.11s (다중 경로 라우팅을 지원하는 IEEE 802.11s기반 메쉬 라우터 구현)

  • Kim, Jeong-Soo;Chung, Sang-Hwa;Choi, Hee-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12A
    • /
    • pp.950-958
    • /
    • 2011
  • This paper focuses in the implementation of mesh router supporting multi-path routing based on IEEE 802.11s. In HWMP of IEEE 802.11s, the single path routing just was defined. So, in this work, we implemented not only the single path routing defined in IEEE 802.11s, but also a multipath routing based on AOMDV which extended the standard. A multi-channel multi-interface technology that can transmit and receive simultaneously and lower bandwidth reduction caused by interferences than a single-channel single-interface was implemented in our mesh router. We also developed an outdoor test bed with the mesh routers. The bandwidth of the mesh router and a real-time video streaming service were verified using the test bed. And, the single path and multipath routing algorithms are also compared. In this test bed, The average TCP bandwidth was 23.77 Mbps and the latency was 2.4 ms in five hops. The test bed could service real-time streaming with an average jitter of 0.547 ms in five hops. The mesh router that used the multipath routing path reduced the path recovery time by 12.73% on average.

Per Packet Authentication Scheme Using One-bit in 802.11 Wireless LAN (802.11 무선랜에서 1 비트를 이용한 패킷 인증 방안)

  • Lee Sungryoul;Kang Jimyung;Moon hogun;Lee myungsoo;Kim Chong-Kwon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.465-472
    • /
    • 2005
  • IEEE 802.11 wireless LAN technology is essential for wireless internet, next generation converged network and home network. But, it is certain that user's privacy must be provided to expand the applicable area in IEEE 802.11 WLAN. Recently, WEP and 802.11i security scheme can be used in MAC Layer. But with VPN technology which is applied to WLAN user, it means that suity mechanism is used redundantly. One bit authentication mechanism was already proposed to solve this redundancy. In this paper, we analyze problems of 1-bit Authentication mechanism which are failure of synchronization and waste of packet. And we propose new algorithm which synchronizes sender with receiver, at once, using duplicated-packet-count information. We show that our algorithm improves success probability of packet authentication up to $98\%$ and efficiency of authentication bit stream up to $97\%$.

Security of Ethernet in Automotive Electric/Electronic Architectures (차량 전자/전기 아키텍쳐에 이더넷 적용을 위한 보안 기술에 대한 연구)

  • Lee, Ho-Yong;Lee, Dong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.39-48
    • /
    • 2016
  • One of the major trends of automotive networking architecture is the introduction of automotive Ethernet. Ethernet is already used in single automotive applications (e.g. to connect high-data-rate sources as video cameras), it is expected that the ongoing standardization at IEEE (IEEE802.3bw - 100BASE-T1, respectively IEEE P802.3bp - 1000BASE-T1) will lead to a much broader adoption in future. Those applications will not be limited to simple point-to-point connections, but may affect Electric/Electronic(EE) Architectures as a whole. It is agreed that IP based traffic via Ethernet could be secured by application of well-established IP security protocols (e.g., IPSec, TLS) combined with additional components like, e.g., automotive firewall or IDS. In the case of safety and real-time related applications on resource constraint devices, the IP based communication is not the favorite option to be used with complicated and performance demanding TLS or IPSec. Those applications will be foreseeable incorporate Layer-2 based communication protocols as, e.g., currently standardized at IEEE[13]. The present paper reflects the state-of-the-art communication concepts with respect to security and identifies architectural challenges and potential solutions for future Ethernet Switch-based EE-Architectures. It also gives an overview and provide insights into the ongoing security relevant standardization activities concerning automotive Ethernet. Furthermore, the properties of non-automotive Ethernet security mechanisms as, e.g., IEEE 802.1AE aka. MACsec or 802.1X Port-based Network Access Control, will be evaluated and the applicability for automotive applications will be assessed.

Efficient Delivery of Multimedia Traffic Using Muti-rate Transmission of 802.11e HCCA MAC Protocol (IEEE 802.11e HCCA MAC의 다중 전송률을 이용한 멀티미디어 트래픽의 효율적 전송)

  • Kim, Young-Hwan;Suk, Jung-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.192-198
    • /
    • 2008
  • In this paper, we propose a scheme that improves the transmission performance of realtime multimedia data in wireless Local Area Network (LAN) environment, through the dynamical control of Transmission Opportunity (TXOP) period of the IEEE 802.11e HCCA Medium Access Control (MAC). The existing schedulers which determine the frame transmission time and its duration could not appropriately cope with the change of physical transmission rate, since the TXOP period has remained unchanged with the change of transmission rate of the wireless station. Our scheme is devised to keep the transmission performance of real-time multimedia data effectively unchanged by making TXOP period be extended when the transmission rate gets reduced. The proposed scheme is experimented along with IEEE 802.11e reference model using NCTUns simulator, which shows that the multimedia data is effectively delivered with the change of transmission rate as the distance between the wireless station and its access point increases.

Deciding Priority of Safety Messages using Decision Tree in IEEE 802.11p/1609.4 Vehicular Network (802.11p/1609 차량네트워크에서 Decision Tree를 이용한 안전메세지 우선순위 결정 기법)

  • Baik, Hyein;Kwon, YongHo;Rhee, Byung Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.794-797
    • /
    • 2015
  • As the interest in VANET is increased, a study on the beacon message transmission between vehicles is actively being made. IEEE 802.11p/1609.4 standard is based on a multichannel system consisting of multiple service channels (SCH) and a control channel (CCH). Multiple SCHs are defined for nonsafety data transfer, while the CCH is used to broadcast safety messages called beacons and control messages (i.e., service advertisement messages). However, most messages broadcast in the only one CCH belong to safety application that must be contested in dense vehicular network. This paper suggests safety message transfer algorithm in dense vehicular congestion. The proposed algorithm is that the priority of safety messages is decided by decision tree and messages are stored in proper queues according to their priorities. Then, safety messages with higher priorities are sent in turn by CCH in the assigned time. The proposed algorithm decreases the beacon transmission delay and increase on the probability of a successful beacon reception in an IEEE 802.11p/1609.4-based network.

  • PDF

Power Efficient Network Scanning Algorithm Based on IEEE 802.11k-Measurement Pilot (IEEE 802.11k-Measurement Pilot을 활용한 저전력 네트워크 스캐닝 알고리즘)

  • Lee, Hyung Kyu;Kim, Hwangnam;Kim, Hyunsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.482-489
    • /
    • 2014
  • This paper suggests the new network scanning algorithm that makes use of measurement pilot of IEEE 802.11k. The purpose of suggesting this algorithm is to improve the existing network scanning schemes. After introducing new algorithm, this paper shows the difference of time property and energy property between former scanning schemes and new scheme with simulation results. Passive scan has a merit of low-power consumption but it takes too long time to fulfill whole scanning. On the contrary, an advantage of active scan is speed but it consumes more battery power than passive scan. By using measurement pilot's smaller interval than beacon interval, the suggested algorithm can consume less power than active scan does, and also make shorter scanning delay than passive scan does.

Design and Performance Analysis of Real-Time Hybrid Position Tracking Service System using IEEE 802.15.4/4a in the Multi-Floor Building (복합환경에서 IEEE 802.15.4/4a를 이용한 하이브리드 실시간 위치추적 서비스 시스템 설계 및 성능분석)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • With recent spotlight on the, uniquitous computing technology, the need for object of indentification and location infrastructure has increased. Such GPS technolgy must utilize IEEE 802.15.4 Zigbee used for existing wireless sensor network infra as a basice element for user's context-awareness in a uniquitous environement, for effectiveness.Such real-time GPS service is provided in the internal environment where the user would actually are and most high-rise buildlings apply. Underthe assumption, the real-time GPS technology is seperated by each floor, and signals do not get transmitted to other floors, the application on one floor within the high-rise buildling was conducted. This study intends to suggest a floor detection algorithm using IEE 802.15.3/Zigbee's RSSI which supports the accuracy within a couple of meters for the user's the movement between the floors in high-rise buildings in a complex environment. It proposes an floor detection algorithm using IEEE 802.15.4/Zigbee's RSSI which provides accuracy within a radius of few meters for the users movement between the floors for real-time location tracking within high-rise building in a cmoplex environment. Furthermore, for more accurate real-time location tracking, it suggests an algorithm for real-time location tracking using IEEE 802.15.4a/Zigbee's CSS technology based on triangulation. Based on the suggested algorithm, it designs a hybrid real-time location tracking service system in a high-rise buildling and test its functions.