• 제목/요약/키워드: IE3D

Search Result 143, Processing Time 0.023 seconds

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

A Study on Design of Mobile Communication Microstrip Patch Antenna using PSO algorithm (PSO 알고리즘을 이용한 이동통신용 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Kim, Myung-Dong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1796-1803
    • /
    • 2013
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication microstrip patch antenna. The aim of the paper is to design and fabricate an inset fed rectangular microstrip antenna and study the effect of antenna dimensions length (L), width (W) and substrate parameters relative dielectric constant (${\varepsilon}r$), substrate thickness on radiation parameters of band width. PSO algorism was applied to IE3D, low resistance against, band width and advantage, were improved.

A Study on Design of Microstrip Patch Antenna for Mobile Communication Systems using IE3D (IE3D를 이용한 단일 급전 이동통신용 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Park, Jong-Dae;Park, Byeong-Ho;Shim, Woo-Seop;Kim, Myeong-Dong;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.316-319
    • /
    • 2012
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication Microstrip Patch Antenna. The aim of the thesis is to Design and fabricate an inset fed rectangular Microstrip Antenna and study the effect of antenna dimensions Length (L), Width (W) and substrate parameters relative Dielectric constant (${\varepsilon}r$), substrate thickness on Radiation parameters of Band width. When the antenna was designed, a dual-band, dual-polarized antenna was used to secure the bandwidth and improve performance, and a coaxial probe feeding method so that the phased array of antenna is easy.

  • PDF

Aperture Coupled and 3-D Transition Microstrip Line Fed Dual Polarization Rectangular Microstrip Antenna (개구결합 및 3차원 천이 마이크로스트립 선로로 급전되는 이중편파 사각형 마이크로스트립 안테나)

  • 조성문;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1034-1039
    • /
    • 2002
  • In this paper, the design of a dual-polarization rectangular microstrip patch antenna with high isolation between two feeding ports excited by using both an aperture-coupled feed (port 1) and a 3-dimensional microstrip feed (port 2) is presented. From the simulation using the commercial program IE3D, the optimum values of the antenna parameters are investigated at both two feed structures and the optimum antenna is designed and fabricated. Experimental results confirmed that an bandwidth of the antenna is about 17 % and the isolation of two ports is great than 30 dB over all frequency bands.

3-D EM Modeling Using Approximate Integral Equation Method for the Models with Non 1-D Background Conductivity (1차원 이외의 배경 전기전도도 구조에서 근사 적분방정식을 이용한 3차원 전자탐사 모델링)

  • Lee Seong Kon;Zhdanov Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.207-217
    • /
    • 2005
  • We present a new approximate formulation of the integral equation (IE) method for models with variable background conductivity. This method overcomes the standard limitation of the conventional If method related to the use of a horizontally layered background only. The new approximate IE method still employs the Green's functions for a horizontally layered 1-D model. However, the new method allows us to use an inhomogeneous background with the IE method. The method was carefully tested for modeling the EM field for complex structures with a known variable background conductivity. It can find wide application in modeling EM data for multiple geological models with some common geoelectrical features, like a known inhomogeneous overburden, or salt dome structures.

A Speed-Up in Computing Time for SSI Analysis by p-version Infinite Elements (p-version 무한요소를 적용한 지반-구조물 상호작용해석의 계산속도 향상)

  • Lim, Jae-Sung;Son, Il-Min;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.471-482
    • /
    • 2016
  • In this study, we focused on a speed-up of KIESSI-3D program, which is based on FE-IE techniques, by introducing a p-version dynamic infinite element method. In order to evaluate performance of the KIESSI-3D, numerical analyses for eight real-scale SSI problems are carried out. We considered three types of KIESSI-3D numerical models whose radii of near-field soil region($r_0$)are 1.2, 1.5, and 3.0 times of basemat radius of structure(R). In addition, SSI analyses using the SASSI2010 program are carried out used for comparison of accuracy and runtime against those of the KIESSI-3D. Numerical results show that the KIESSI-3D model of $r_0=1.2R$ is enough to give accurate solution. In view of the computing speed, the new KIESSI-3D was up to 25 times faster than the old KIESSI-3D.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Design of a High Gain Microstrip Antenna with Rectangular Cavity Backed (구형 캐비티 부착형 고이득 마이크로스트립 안테나 설계)

  • 임정섭;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.822-828
    • /
    • 2001
  • In this paper, a high gain microstrip antenna with rectangular cavity backed is designed. A single microstrip patch is basically a low gain radiator As a ga in enhancement method, superstrate loading techniques are applied to the $2\times2$ microstrip array antenna with cavity backed. In antenna design, although the broadside gain increases as the cavity is enlarged, a cavity size of $3\times3$ wavelength is sufficient. The distance between the radiating elements is chosen as 1.5 free-space wavelength. The antenna radiation characteristics are calculated by IE3D software and compared with the experimental results. Experimental results show that the maximum gain is 18.6dBi at the frequency of 9.16GHz, which is good agreement with the calculations.

  • PDF

Design and Fabrication of a Planar Inverted-F Antenna for the Wireless LAN using the 5 GHz Band (5 GHz 대역의 무선 LAN용 평면 역-F 안테나 설계 및 제작)

  • 김용진;이상설
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.459-467
    • /
    • 2002
  • A compact, lightweight and low-cost Planar Inverted-F Antenna(PIFA) for wireless LAN communication in the 5 GHz band is designed. The antenna is designed using the IE3D, the simulation tool of the Zeland Inc.. The characteristics of the implemented antenna are measured and analyzed. The antenna is resonated at the 5.25 GHz and its bandwidth is about 580 MHz under the condition of VSWR$\leq$1.5.

A Systematic Construction Process of 3D Database for Realtime Virtual Simulation of Transportation Equipments (수송장비의 실시간 가상 시뮬레이션을 위한 3차원 데이터베이스의 체계적인 구축 프로세스)

  • Kim, Bo-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.258-267
    • /
    • 2003
  • Recently, virtual reality technologies have been rapidly developed and realtime virtual simulation methods have been extensively employed for several application areas such as game, sports, manufacturing, military, and so on. A 3D database in realtime virtual simulation plays a key role because it makes users feel reality in virtual space. In a application view of 3D database, a systematic construction approach is required to reduce its construction time and increase its quality. However, many researches have been mostly focused on realtime graphic issues and its key technologies. In virtual simulation of transportation equipments, this paper proposes a systematic construction process of 3D database consisting of four stages as follows: 1) determine the activity space of a equipment, 2) collect data related to 3D database construction, 3) make a 3-dimensional modeling strategy, and 4) generate and evaluate a 3D model. This paper also introduces a new procedure of 3D environment modeling, which summarizes and expands our modeling experiences, to be used as a modeling guide.