• Title/Summary/Keyword: IE tool

Search Result 115, Processing Time 0.023 seconds

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

A Framework for Analyzing the Effectiveness of a Collaboration Support System for Small and Medium-sized Enterprises (중소제조기업 협업지원 시스템의 도입 및 활용 효과 분석 프레임워크)

  • Kim, Jeong-Yeon;Ahn, Jae-Hyung;Shin, Dong-Min;Moon, Yong-Ma
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • Recently, the collaboration among small and medium-sized enterprises(SMEs) has been recognized as an effective competitive tool. As several systems have been developed to boost the collaboration, it is necessary to analyze the effectiveness of the systems in terms of their contribution to enhance operational performance of SMEs through objective and quantitative validation. In particular, the analysis for SMEs rather than large-scaled enterprises has not received much attention due to lack of relevant information and difficulty of collecting data. This paper presents a framework for analyzing the effectiveness of the collaboration support system, called i-manufacturing hub, which has been implemented by Korean government. Identification of influential factors to the effectiveness of collaboration hub, and constructing necessary hypotheses are proposed. To overcome the difficulty in data collection only by means of surveys through subjective questionnaires, we exploit system log data that are generated while SMEs use the system. As an initial phase to analyze the effectiveness through hypothesis validation, we discuss several interesting observations and challenges in the direction of enhancing collaboration among SMEs for better operational performance improvement and more participation in the collaboration hub.

Development of Product Specification Management System for Product Data Integration Framework in Customer-Oriented Manufacturing Enterprise (고객지향 수주생산 기업에서 제품정보 통합체계를 위한 제품사양관리시스템 구축)

  • Jung, Soon-Il;Kim, Jae-Gyun;Jang, Gil-Sang
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.18-32
    • /
    • 2008
  • In recent, a general trend is observed towards more customized products and shorter product life cycles in manufacturing companies. In these companies, customers often wish to influence the product they order and to get a variant of product that meets their requirements. This environment is called as a customer-oriented manufacturing companies. This paper presents a procedure of product specification management for customer-oriented manufacturing companies by using product specification framework. This framework is founded on the product specification based product structure which is made of model, specification, function, and part. Also, a product specification management system(PSMS) is implemented by using the proposed product specification framework and is a core system in product data integration system. To illustrate an utilization of the proposed framework and procedure, a case of a ship engine product is applied. As a result, PSMS reduces delivery time and improves customer relationships. Moreover, the case shows that PSMS can be used as a tool for improving inter-department coordination within a company during product life cycle.

Conceptual Design of a Hazard Evaluation Process for Constructing the Korean Hazard Information System : Focused on Flood Hazard (한국형 재해정보시스템 구축을 위한 재해평가 프로세스 개념설계 : 홍수재해를 중심으로)

  • Jeong, Keun-Chae
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.365-377
    • /
    • 2008
  • In this paper, for constructing the Korean Hazard Information System (KHIS), we conceptually design a hazard evaluation process. We first deal with a hazard evaluation process focused on flood hazard to give the most immense damage and loss. The hazard evaluation process is consist of a damage evaluation process and a loss evaluation process, and is used for transforming hazards from natural disasters into economic measures. The proposed process is developed based on the famous FEMA (Federal Emergency Management Agency)'s $HAZAS^{@MH}$methodology. We modify the FEMA's process to be mutually exclusive and collectively exhaustive, that is all losses from the hazards are included into the estimation process but the losses are not duplicated in the process. In addition to this, we define the loss process specifically by considering the characteristics from the hazard environments of Korea. We can expect that KHIS for evaluating economic losses from natural hazards can be developed based on the conceptual design for the economic loss evaluation process, and KHIS can be used as a useful tool for analyzing the feasibilities of mitigation plans in central/local governments.

Establishing Methodology for Simulation-based Ship Design and Construction Using Virtual Manufacturing Technologies (가상생산기술을 이용한 시뮬레이션 기반의 선박설계 및 생산체계의 수립)

  • Kim, Hong-Tae;Lee, Jong-Gap;Hwang, Kyu-Ok;Jang, Dong-Sik
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.230-240
    • /
    • 2002
  • Information technologies centered on the internet in the area of shipbuilding and marine engineering further incur the needs to increase the flexibility of the organization, the dispersion of work process, and the use of out sourcing, as well as the globalization of related market. In near future, electronic commerce and concurrent engineering based on CALS/EC and the Internet will be an integral part of the environment and upon these changes, ship design and construction will become a computer supported cooperative work of many dispersed and specialized groups. As the means of active response to these environmental changes, many new concepts such as digital shipbuilding, virtual shipyard, and simulation based design are appearing. In this paper, the concept and current status of digital manufacturing in general manufacturing industry will be reviewed. Then, related technologies, area of application and methods of digital manufacturing in shipbuilding and marine industries are presented. In addition, virtual assembly simulation system for shipbuilding(VASSS), a tool for crane operability and block erection simulation in virtual dock based on 3D product model, will be introduced.

The Effect on the Mobility of Evacuating Passengers in Ship with Regard to List and Motion (선박의 경사 및 동요효과가 탈출승객의 이동성에 미치는 영향)

  • Kim, Hong-Tae;Lee, Dong-Kon;Park, Jin-H.;Hong, Seung-Kweon
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2004
  • The most complicated and difficult area in the simulation of evacuation process is the area of human behavior. However, it is generally very difficult to understand and quantify human behaviors since the factors involved vary significantly according to the types of accidents and the environment. The walking speed of passenger is especially affected by dynamic effect and list due to damage and ship motion in wave. There are various methods to get the useful data for evacuation simulation. The onboard experimental approach is one of the strongest method. This paper discusses the onboard experimental results of human mobility of passengers in evacuation from ship. To realize ship trim and heel due to maritime casuality, the passage model for experiment is made. The experiment was carried out at dynamic and static condition respectively using the ship with passage model. The result was evaluated and it will be reflected in evacuation simulation tool.

A Study on Improvement of a Production System in Small and Medium Sized Shoes Companies using Simulation (시뮬레이션을 이용한 중소 신발생산기업의 생산시스템 개선방안 연구)

  • Lee, Kyung-Keun;Yun, Won-Young;Moon, Il-Kyeong;Cho, Hyung-Soo;Cha, Byung-Chul
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2005
  • A production system in domestic shoes companies has difficulty in achieving automation and information because of insufficiency of flexibility and standardization. Particularly small and medium sized shoes companies producing by OEM have tendency to chase the given production schedule blindly without considering major factors that may affect the production. Therefore, the production schedules or the process conditions can not be optimally set and are extemporized by the experience in the past. These behaviors cause low productivity and financial loss. To maximize efficiency and productivity of the shoe-making process, we develop a simulation model based on a production system in small and medium sized shoes companies. The model has been developed using ARENA which has been demonstrated to be a powerful tool to simulate various manufacturing systems. Using the simulation model, we find out several problems for the production process, and then suggest several alternatives to improve the system.

A Study of Formation of Machine Cell-Part Family in FMS using the Simulated Annealing Algorithm (시뮬레이티드 어닐링 알고리즘을 이용한 유연생산시스템의 기계셀-부품군 형성에 관한 연구)

  • Kim, Jin-Yong;Park, Dae-Geuk;Oh, Byeong-Wan;Hong, Sung-Jo;Choi, Jin-Yeong
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 1997
  • The problem of the formation of machine-part cells in FMS is a very important issue at the planning and operating stages of FMS. This problem is inherently a combinatorial optimization problem, proven to be NP-complete(or, NP-hard). Among the several kinds of approaches which have been applied to solve the combinatorial optimization problems, the Simulated Annealing(SA) algorithm, a technique of random search type with a flexibility in generating alternatives, is a powerful problem solving tool. In this paper, the SA algorithm is used to solve machine cell-part family formation problems. The primary purpose of the study is to find the near-optimal solution of machine cell-part family formation problem, whare the product volume and number of operations are prespecified, that can minimize the total material handling cost caused by exceptional elements and intercell moves as much as possible. The results show that the SA algorithm is able to find a near-optimal solution for practical problems of the machine cell-part family formation.

  • PDF

Developing a Bayesian Network Model for Real-time Project Risk Management (실시간 프로젝트 위험관리를 위한 베이지안 네트워크 모형의 개발)

  • Kim, Jee-Young;Ahn, Sun-Eung
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Most companies have been increasing temporary work projects to maximize the usage of their resources. They also have been developing the effective techniques for analyzing and managing the state of the projects. In order to monitor the state of a project in real-time and predict the project's future state more accurately, this paper suggests the Bayesian Network (BN) as a tool for discovering the causes of project risk and presenting the failure probability of the project. The proposed BN modeling method with consideration of the Earned Value Management (EVM) method shows how to induce the predictive and conditional probability of the risk occurrence in the future. The advantages of the suggested model are (1) that the cause of a project risk can be easily figured out via the BN, (2) that the future value of the project can be sufficiently increased by updating relevant components of the project, and (3) that more credible prediction can be made in the similar and future situation by using the data obtained in current analysis. A numerical example is also given.

Estimating Failure Rate Using Warranty Claim Data with Delayed Report of Customers (고객의 지연보고를 고려한 보증수리내역자료에서의 고장률 추정)

  • Park, J.H.;Kim, Y.H.;Baek, J.H.;Lie, C.H.
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.176-181
    • /
    • 2010
  • Warranty claim data analysis is a useful tool for the manufacturer because it contains many useful informations regarding reliability of the product in the real-world environments. Because of the nature of uncertainty and the incompleteness of data, some bias patterns are observed on warranty claim rate known as 'spikes'. Two types of spikes are considered. One is due to manufacturing-related failures. The other is caused by customer's behavior. This paper proposes a model by considering two types of spikes. Warranty claim data is analyzed with the proposed model. To represent spikes observed on the early warranty period, we classify failures into manufacturing-related failures and usage-related failures. Uniform distribution is assumed for the time delayed to diagnose and report by customers. By reducing maximum value of the delayed time by customers, the proposed model characterizes customer's rush in the vicinity of the warranty expiration limit. Experimental results by using the real warranty claim data show that the proposed model is better than the existing one in respect to MSE(Mean Squared Error). Moreover it is expected to estimate the failure rate more realistically with proposed model because it considers the delayed time to diagnose and report by customers.