• Title/Summary/Keyword: ICT agriculture

Search Result 143, Processing Time 0.023 seconds

Precision Forestry Using Remote Sensing Techniques: Opportunities and Limitations of Remote Sensing Application in Forestry (원격탐사 기술의 국내 정밀 임업 가능성 검토: 임업분야의 원격탐사 적용사례 분석을 중심으로)

  • Woo, Heesung;Cho, Seungwan;Jung, Geonhwi;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1067-1082
    • /
    • 2019
  • This review paper presents a review of evidence on systems and technologies for recent remote sensing techniques which were applied into forest and forest related sectors. The paper reviewed remote sensing techniques that will have, or already having, a substantial impact on improving data quality of forest inventory and forest management and planning. The aim of this review is to identify, categorize and discuss Korean and international sources published primarily in the last decades. The focus on remote sensing and ICT technologies examines issues related to their opportunities, limitation, use and impact on the forestry. More specifically, this literature review has focused on laser scanning, satellite imagery, and Unmanned aerial vehicles (UAV) utilization in forest management and inventory analysis.

A Study on the Trends of Virtual Reality Application Technology for Agricultural Education (가상현실 응용기술의 동향 분석을 통한 국내 시설농업의 교육용 가상현실 활용방안 고찰)

  • Kim, Jun-Gyu;Lee, In-bok;Yoon, Kwang-Sik;Ha, Tae-hwan;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sang-yeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • With the rapid development of the 4th industrial revolution, the large-sized facilities of agriculture have been developed with high-technologies. However, it is difficult to maintain the optimum environment in large-sized facilities. Although it is essential to control micro-climate properly in large-sized facilities, there are a lot of problems to utilize high-technologies and equipment because of insufficient education for farmers. Most farms have limitations to access to their farm because of prevention of epidemics, exposure of management know-how, and so on. Especially, it is difficult to understand internal environmental factors (airflow, temperature, humidity, etc.) for farmers because these factors are invisible. Recently, Virtual reality technology which allows users to experience various phenomena directly is attracting attention. Virtual reality is very useful technology to visualize airflow and temperature distribution and so on. However, there is no cases applied this technology to agricultural facilities. In this study, research trends of virtual reality in various fields were investigated. In particular, the limitation and possibility of virtual reality technology were analyzed for educating farmers. Finally, the development of virtual reality contents for smart-farm facility were suggested.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

ICT-Based Ginseng Process Ginseng Plant Composition Analysis (ICT 기반의 인삼 공정 육묘 시 인삼 식물체 분석)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.63-70
    • /
    • 2021
  • In order to compare and investigate the growth rates of each of the various soils, the soil mixing ratios were varied to four soils (Pitmos, Pearlite, Masato, General Soil, and Cocopeat). Ten were selected for each soil ratio and the average length and weight were compared. As a result, in the ratio of No. 1 pitmos 6.5: Perlite 2: Masato 1.5, it was measured as 16.36cm, 0.60g. In the ratio of No. 2 pitmos 10, 13.74cm, 0.41g. In the ratio of No. 3 general clay 10, it was measured as 12.43cm, 0.26g. 4 general clay 8, 0.39g. The growth rate of each soil was measured to be superior to that of other soil growth environments in the ratio of pitmos 6.5: pearlite 2: masato 1.5 soil. For ginseng plant analysis, 30 ginseng plants grown in the average length and weight of each soil at a ratio of 6.5: pearlite 2: masato 1.5 and relatively low-result general soil were selected and analyzed. As a result, 1,040ppm of nitrite nitrogen(NO3-N) was higher in ginseng plants grown in general soil. There was no significant difference in phosphoric acid(P), potassium(K), and magnesium(Mg). Ginseng is characterized by poor growth when it exceeds 300ppm by combining ammonia tae (NH4-N) and nitrate tae (NO3-N) nitrogen. In addition, nitric acid produced in a part of this nitrite makes the pH reaction of the soil acidic, and the nitrite remaining in the soil evaporates into gas.

Effect of Nitrogen component and Ge Composition on Growth in the Cultivation of ICT-based Ginseng Process (ICT 기반의 인삼 공정 육묘 시 질소 형태와 게르마늄(Ge) 유무가 생장에 미치는 영향)

  • Dong Hyun, Kim;Yeon Bok, Kim;Hyun Jung, Koo;Hyun Jin, Baek;Su Bin, Lee;Jeei Hye, Choi;Eui Gi, Hong;Kwang Jin, Chang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.11-17
    • /
    • 2022
  • Ginseng hydroponic cultivation was cultivated as a nutrient solution and the growth was investigated 60 days later. The length(cm) increased from EC1.0 and EC2.0 concentrations to 5.47cm before, followed by EC0.5, 2.5, 1.5, and 0.0. The weight(g) increased from EC1.0 concentration to 2.39g before, followed by EC1.5, 2.5, 0.5, 0.0 and 2.0. The width(mm) increased from EC1.0 concentration to 1.9mm than before, followed by EC2.5, 0.5, 1.5, 2.0, and 0.0. In the ginseng growth experiment according to nutritional components, the average length of NO3-N mixed experiment increased to 0.33cm, the average weight of 0.04g, and the average width of 0.35mm. In the experiment in which NH4-N was mixed without NO3-N, the growth was reduced to 0.37cm in average length, 0.03g in average weight, and 0.22mm in average width. In an experiment in which germanium(Ge) is mixed with a nutrient component, the average length is increased to 0.33cm, the average weight is increased to 0.04g, and the average width is increased to 0.35mm, but in an experiment excluding germanium(Ge), the growth is reduced to 0.11cm, the average weight is 0.04g, and the average width is 0.03mm.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

Analysis of Patent Trends in Industrial Information and Communication Technology Convergence: Personal Protection and Convenience Equipment Applicable to Agriculture (농업분야에 적용이 가능한 산업용 ICT 융합 개인보호 및 편이장비 특허동향 분석)

  • Kim, Insoo;Kim, Kyungsu;Chae, Hye-Seon;Kim, Hyo-Cher;Kim, Kyung-Ran
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.3
    • /
    • pp.377-390
    • /
    • 2017
  • This study identified technological trends through an analysis of patents for the industrialization of personal protection and convenience equipment using information and communication technology (ICT) as a part of efforts to prevent farm work-related disasters. The analysis was conducted on patents registered and published between January 1974 and May 2016 by the world's five largest intellectual property offices, including the KIPO, USPTO, JPO, EPO, and SIPO. The results of the analysis indicate that the US (36.8%) and South Korea (30.9%) led technological research and development (R&D) with frequent patent applications. An analysis of the technological market revealed that these countries are in the growth and maturity stages, in which the number of patents and number of patent applicants grow rapidly. In terms of the technological market shares of major countries, the US recorded the highest market shares in the field of sensing systems for workers' dangerous conditions and convenience protection equipment based on the internet of things (IoT) convergence. South Korea marked the highest share of 41.8% in the field of sensing devices for dangerous conditions in the working environment. An analysis of the trend of patent applications by specific technologies disclosed the following results: sensing systems for workers' dangerous conditions accounted for the highest share (49.2%), followed by IoT convergence-based convenience protection equipment (26.3%) and sensing devices for dangerous conditions in the working environment (24.6%). Based on this study, ICT-based personal protection and convenience equipment technologies are expected to be actively developed in the future. It will be necessary to secure national competitiveness through R&D investments and commercialization in personal protection and convenience equipment appropriate for farm work as well as through the acquisition of patent technologies and intellectual property rights.

A Study on Agricultural Drought Monitoring using Drone Thermal and Hyperspectral Sensor (드론 열화상 및 초분광 센서를 이용한 농업가뭄 모니터링 적용 연구)

  • HAM, Geon-Woo;LEE, Jeong-Min;BAE, Kyoung Ho;PARK, Hong-Gi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.107-119
    • /
    • 2019
  • As the development of ICT and integration technology, many changes and innovations in agriculture field are implemented. The agricultural sector has shifted from a traditional industry to a new industrial form called the 6th industry combined with various advanced technologies such as ICT and IT. Various approaches have been attempted to analyze and predict crops based on spatial information. In particular, a variety of research has been carried out recently for crop cultivation and smart farms using drones. The goal of this study was to establish an agricultural drought monitoring system using drones to produce scientific and objective indicators of drought. A soil moisture sensor was installed in the drought area and checked the actual soil moisture. The soil moisture data was used by the reference value to compare and analyze the temperature and NDVI established by drones. The soil temperature by the drone thermal image sensor and the NDVI by the drone hyperspectral was analyzed the correlation between crop condition and soil moisture in study area. To verify this, the actual soil moisture was calculated using the soil moisture measurement sensor installed in the target area and compared with the drone performance. This study using drone drought monitoring system may enhance to promote the crop data and to save time and economy.

The Japanese Wagyu beef industry: current situation and future prospects - A review

  • Gotoh, Takafumi;Nishimura, Takanori;Kuchida, Keigo;Mannen, Hideyuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.933-950
    • /
    • 2018
  • In Japan, Wagyu cattle include four Japanese breeds; Black, Brown, Shorthorn, and Polled. Today, the renowned brand name Wagyu includes not only cattle produced in Japan, but also cattle produced in countries such as Australia and the United States. In recent years, the intramuscular fat percentage in beef (longissimus muscle) from Japanese Black cattle has increased to be greater than 30%. The Japanese Black breed is genetically predisposed to producing carcass lipids containing higher concentrations of monounsaturated fatty acids than other breeds. However, there are numerous problems with the management of this breed including high production costs, disposal of untreated excrement, the requirement for imported feed, and food security risks resulting from various viral diseases introduced by imported feed. The feeding system needs to shift to one that is more efficient, and improves management for farmers, food security for consumers, and the health environment for residents of Japan. Currently, we are developing a metabolic programming and an information and communications technology (ICT, or Interne of Things) management system for Wagyu beef production as future systems. If successful, we will produce safe, high-quality Wagyu beef using domestic pasture resources while solving the problems of how to utilize increasing areas of abandoned agricultural land and to make use of the plant-based feed resources in Japan's mountainous areas.