• Title/Summary/Keyword: ICRP Recommendations

Search Result 23, Processing Time 0.028 seconds

The ICRP and Its System of Radiological Protection (국제방사선방호위원회와 방사선방호체계)

  • Kun-Woo Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • International Commission on Radiological Protection (ICRP) is an independent international organization that advances the science of radiological protection for the public benefit, particularly by providing recommendations and guidance on all aspects of protection against ionizing radiation. The ICRP is a community of more than 380 globally-recognized experts in radiological protection science, policy, and practice from more than 50 countries. As of January 2024, the ICRP is comprised of a Main Commission, the Scientific Secretariat, four Standing Committees, and 30 Task Groups under the four committees. The ICRP has released well over one hundred publications on all aspects of radiological protection. Most address a particular area within radiological protection, but a handful of the publications, the so-called fundamental recommendations, describe the overall system of radiological protection. The system for radiological protection is based on the current understanding of the science of radiation exposure and its effects along with value judgements. The ICRP offers recommendations to regulatory and advisory agencies and provides advice to management and professional staff with responsibilities for radiological protection. Legislation in most countries adheres closely to ICRP recommendations. The International Atomic Energy Agency's (IAEA) International Basic Safety Standards are based heavily on ICRP recommendations. ICRP recommendations form the core of radiological protection standards, legislation, programs, and practice worldwide.

A STUDY ON ICRP RECOMMENDATIONS

  • Wang, Hengde
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.337-340
    • /
    • 2001
  • This paper reviews briefly the ICRP recommendations published before 1977, in 1977 (ICRP 26), in 1990 (ICRP 60) and in the near future (around 2005) mainly in the philosophy and principles. The great progress is appreciated. A discussion is presented at the end.

  • PDF

ICRP-26, The Recommendations on Radiological Protection (방사선방호(放射線防護)에 관(關)한 ICRP 권고(勸告) 26)

  • Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1983
  • Since the last ICRP recommendations on radiological protection was published in 1966 as it's Publication 9, the revised edition of the recommendations had first been published in 1977, accommodating up-to-date knowledge of radiobiology and operational experiences of radiation protection built up for over a decade. In this article, the new version of the recommendations is reviewed in comparison with those of the Publication 9, while the corrections and modifications made afterward are introduced together with the recent trends and responses of the experts in various countries for the practical adoption or legislation of the recommendations.

  • PDF

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Derived Limits for Radiological Protection Against ionizing Radiation Based on ICRP-60 Recommendations

  • Jang, Si-Young;Lee, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.350-360
    • /
    • 2000
  • In Korea, the dose limits are reduced and are set at the ICRP-60 iimits. However, derived limits tabulated as MPC in air and water are still specified in Notice No.98-12. There are some discrepancies between the primary dose limits and MPCs in air and water. Therefore, in order to accept ICRP-60 recommendations fully, derived limits such as ALI, DAC, ECL for radiological protection against ionizing radiation based on ICRP-60 recommendations were calculated using modified methods of those of 10 CFR part 20, dose limits and committed effective dose coefficients of the Basic Safety Standards of the IAEA. The derived limits in this study were also compared with those prescribed in 10 CFR part 20 as well as MPCs of Notice No. 98-12 in order to analyze the impact of implementing derived limits on nuclear facilities. ECLs in air and water for the control of radioactive discharge into the environment in this study are shown to have lower values (i.e. more conservative), for most part, than those in Notice No. 98-12. Especially, for uranium elements, ECLs in water are approximately a magnitude in the order of two lower than those in Notice No.98-12.

  • PDF

A Study on the Implementation of Dose Constraints in Occupational Dose According to ICRP 103 Recommendations in Korea (ICRP신권고에 따른 직무피폭에서의 선량제약치 국내 적용 방안 연구)

  • Kim, Yong-Min;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • In 2007, the International Commission on Radiological Protection (ICRP) published Recommendations of the International Commission on Radiological Protection. Accordingly IAEA safety standards committees have reviewed and revised the BSS. The process of the implementation of the ICRP 103 into Korean radiation protection regulations has been continued. Although the new recommendations retain the fundamental protection principles, the impact of the new ICRP recommendations will necessarily be greater than ever before. ICRP recommends the application of dose constraint in planned situations and reference level in existing & emergency situations for strengthening of the principle of optimization. Dose constraints and reference level play a criterion on the level of individual dose as prospective and source-related values. Therefore it is necessary to apply dose constraints and reference levels to all nuclear and RI&RG facilities in Rep. of Korea. Dose constraints and reference level of occupational exposure will be set-up by the stakeholder itself with the cooperation of regulatory body. In this study, the implementation method was discussed to apply the dose constraints and reference level as the procedure for the optimization, not the tool of the regulation.

Alarm Setpoint Determination Method of Gaseous Effluent Radiation Monitoring Systems Using Dose Factors Based on ICRP-60 Recommendations (선량환산인자를 이용한 기체유출물 RMS 경보설정 개선방안)

  • 박규준;김희근;하각현;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.491-496
    • /
    • 2003
  • In Korea, the dose limits to the public were reduced according to ICRP-60 recommendations. The secondary quantities, Effluent Concentration Limits (ECLs) were derived and enacted to Korean Atomic Laws based on ICRP-60 recommendations. The Korea atomic laws require assurance that radioactive materials within gaseous effluents do not exceed dose limits and ECLs. This simply means that any effluent that would possibly contain radioactivity must be monitored. There are various methods to monitor the radioactivity of effluent monitor to satisfy the dose limits and the ECLs for gaseous effluents. The many factors (safety margin) should be considered in determining of the setpoint of effluent monitor, following these limits. In this study, we studied the determination method of alarm setpoint for gaseous effluent Radiation Monitoring Systems using dose factors considered the main pathway of radionuclides to compare the preceding determination method of alarm setpoint for gaseous effluent RMSs using dose assessment program considered all the practicable pathways of radionuclides.

  • PDF

A study on the effects of scattering dose on eyes and thyroid for panoramagraphy - Focus on TLD and PLD - (파노라마 촬영시 눈과 갑상선에 미치는 표면선량에 관한 연구 - TLD, PLD 중심으로 -)

  • Dong, Kyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1118-1123
    • /
    • 2009
  • Ten hospitals from the Gwangju area were used to examine shallow dose to eyes and thyroid from panoramagraphy. Thermoluminescent dosimeter (TLD) and Photoluminescent dosimeter (PLD) were used as measurement devices at each hospital. ICRP 60 and ICRP 73 set standards for acceptability for eyes at 15mSv and thyroid at 1mSv per year. Left eye measures with TLD and PLD resulted in 0.19mSv and 0.24mSv respectively. Right eye measures with TLD and PLD resulted in 0.23mSv and 0.25mSv respectively. Thyroid measures with TLD and PLD resulted in 0.08mSv and 0.25mSv respectively with both measures not exceeding standards for acceptance. There was a significant difference in comparing the left eye and thyroid for TLD and PLD (p<0.01). There was no significant difference with the right eye (p>0.05). The absorbed dose measurements for eyes and thyroid using TLD and PLD in regards to panorama devices at each hospital were within the ICRP 60 recommendations; however, with the possibility of stochastic effect, all dose levels were taken into consideration.

  • PDF

Current Status of Internal Dosimetry Methods and Radiological Regulations in Korea, Ukraine and European Community

  • Lee, Tae-Young;Lee, Jong-Il;Berkovski, Vladimir
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • The paper discusses results of recent international intercomparison exercises on internal dose assessments, status of up to date internal dosimetry methods and the radiological legislation developed and implemented in Korea, European Union and Ukraine. The system of radiation protection in Korea is based on the Korean Atomic Energy Regulatory Enforcement on Safety Standards (Ministry Notice No. 2001-2). The notice is based on the recommendations in ICRP Publication 60 (1990) and IAEA Basic Safety Standards (1996). But the full implementation of the notice by the end of the year 2002 is not required because of the socio-economic situation and inexperience in internal radiation dosimetry Regulatory framework for internal radiation dosimetry is under development toward the full implementation of the notice from January 1, 2003. The system of radiation protection in Ukraine is based on the National radiation protection regulatory code NRBU-97. The code was developed and adopted in 1998 and replaced the Regulations of Former Soviet Union. The document is based on the ICRP Publication 60, Euratom Directive 96/29 and IAEA Basic Safety Standards (1996). The transitional period of 5 years (effected till January 2003) is established for implementation of all requirements of this new regulation. The system of radiation protection in the European Community is based on the Council Directive 96/29/Euratom, adopted in 1996 and enforced from 13 May 2000. Directive 96/29/Euratom has the status of the European law.