• Title/Summary/Keyword: ICPHFCVD

Search Result 6, Processing Time 0.033 seconds

Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD (유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구)

  • 김광식;류호진;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.713-719
    • /
    • 2002
  • In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.

The Vertical Alignment of CNTs and Ni-tip Removal by Etching at ICPHFCVD (ICPHFCVD에 의한 탄소나노튜브의 수직 배향과 에칭을 이용한 Ni-tip의 제거)

  • 김광식;장건익;장호정;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a technique for the preparation of vertically grown CNTs by ICPHFCVD(inductively coupled plasma hot filament chemical vapor deposition) below $580^{\circ}C$. Purification of the CNTs(carbon nanotubes) using RE(radio frequency) plasma in a one step process, based on the different etching property of the Ni-tip, amorphous carbon and carbonaceous materials is also discussed. After purifying the grown materials. CNTs shown the multi walled and hollow typed structure. The typical outer and inner diameters or CNT were 50 nm and 25 nm, respectively. The graphitic wall was composed of 82 layers and the distance between wall and wall was 0.34 nm. From the results of TEM observation, the Ni catalyst at the tip of the carbon nanotubes were effectively removed by using a RF plasma etching, continuously.

  • PDF

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties (DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성)

  • Kim, Kwang-Sik;Ryu, Ho-Jin;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

A Study on the Growth of Carbon Nanotube by ICPHFCVD and their I-V Properties (ICPHFCVD법에 의한 탄소나노튜브의 생장 및 I-V 특성에 관한 연구)

  • 김광식;류호진;장건익;장호정
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.158-164
    • /
    • 2002
  • 본 연구에서는 탄소나노튜브를 직류 바이어스가 인가된 유도결합형 플라즈마 열선 화학기상증착 장치를 이용하여 58$0^{\circ}C$ 이하의 저온에서 유리기판의 변형 없이 수직 배향 시켰다. 탄소나노튜브의 성장을 위해 강화유리기판 위에 전도층으로 Cr을 증착하였고, 그 위에 촉매 층으로 Ni을 순차적으로 RF magnetron cputtering 장치를 이용하여 증착 시켰다. 성장 시 탄소나노튜브의 저온에서의 좋은 특성을 위해 높은 온도에서의 열분해를 목적으로 텅스텐 필라멘트를 이용하였으며, 수직 배향 시키기 위해서 직류 바이어스를 이용하였다. 성장된 탄소나노튜브는 수직적으로 잘 배향 되었으며, 저온에서 좋은 특성을 보였다. 탄소나노튜브의 특성화에는 SEM, TEM을 관찰하였으며, Raman spectroscopy를 이용하여 흑연화도를 측정하였고, 전계방츨 특성은 전류 전압 특성곡선과 Fowler-Nordheim plots를 이용하였다.

  • PDF