• Title/Summary/Keyword: ICP MS

Search Result 491, Processing Time 0.022 seconds

Accurate Analysis of Chromium in Foodstuffs by Using Inductively Coupled Plasma Mass Spectrometry with a Collision-Reaction Interface

  • Lee, Seung Ha;Kim, Ji Ae;Choi, Seung Hyeon;Kim, Young Soon;Choi, Dal Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1689-1692
    • /
    • 2013
  • Food is a common source of chromium (Cr) exposure. However, it is difficult to analyze Cr in complex food matrices by using inductively coupled plasma mass spectrometry (ICP-MS) because the major isotope, $^{52}Cr$, is masked by interference generated by the sample matrix and the plasma gas. Among the systems available to minimize interference, the recently developed collision-reaction interface (CRI) has a different structure relative to that of other systems (e.g., collision cell technology, octopole reaction system, and dynamic reaction cell) that were designed as a chamber between the skimmer cone and quadrupole. The CRI system introduces collision or reaction gas directly into the plasma region through a modified hole of skimmer cone. We evaluated the use of an CRI ICP-MS system to minimize polyatomic interference of $^{52}Cr$ and $^{53}Cr$ in various foodstuffs. The $^{52}Cr$ concentrations measured in the standard mode were 2-3 times higher than the certified values. This analytical method based on an ICP-MS system equipped with a CRI of helium gas was effective for Cr analysis in complex food matrices.

Extraction Chromatographic Separation of Technetium-99 from Spent Nuclear Fuels for Its Determination by Inductively Coupled Plasma-Mass Spectrometry (유도결합플라스마 질량분석을 위한 사용후핵연료 중 테크네튬-99의 추출크로마토그래피 분리)

  • Suh, Moo-Yul;Lee, Chang-Heon;Han, Sun-Ho;Park, Yeong-Jae;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.438-442
    • /
    • 2004
  • To determine the contents of $^{99}Tc$ in the spent PWR (pressurized water reactor) nuclear fuels by ICP-MS (inductively coupled plasma-mass spectrometry), a technetium separation method using an extraction chromatographic resin (TEVA Spec resin) has been established. $^{99}Tc$ was separated from a spent PWR nuclear fuel solution by this separation procedure and its concentration was determined by ICP-MS. The result agrees well with the value calculated by the program ORIGEN 2 and also the value measured by AG MP-1 resin/ICP-MS method described in our previous paper. It can be concluded that the present separation procedure is superior to the AG MP-1 resin procedure with respect to the time required for technetium separation as well as the efficiency of decontamination from other radioactive nuclides.

LA-ICP-MS U-Pb Zircon Age of the Hongjesa Granite in the Northeast Yeongnam Massif (영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대)

  • Lee, Ho-Sun;Park, Kye-Hun;Song, Yong-Sun;Kim, Nam-Hoon;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • U-Pb zircon age for the Hongjesa granite, in the northeast Yeongnam massif, was determined using LA-ICP-MS. We obtained upper intercept age of $2013^{+30}/_{-24}(2{\sigma})$ Ma, indicating Paleoproterozoic granitic magmatism together with the Buncheon and Pyeonghae granite gneisses of the region.

Toxic Trace and Earth Crustal Elements of Ambient PM2.5 Using CCT-ICP-MS in an Urban Area of Korea

  • Lee, Jin-Hong;Jeong, Jin-Hee;Lim, Joung-Myung
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS) was used to measure the concentrations of approximately 19 elements associated with airborne PM2.5 samples that were collected from a roadside sampling station in Daejeon, Korea. Standard reference material (SRM 2783, air particulate on filter media) of the National Institute of Standards and Technology was used for the quality assurance of CCT-ICP-MS. The elemental concentrations were compared statistically with the certified (or recommended) values. The patterns of distribution were clearly distinguished between elements with their concentrations ranging over four orders of magnitude. If compared in terms of enrichment factors, it was found that toxic trace elements (e.g., Sb, Se, Cd, As, Zn, Pb, and Cu) of anthropogenic origin are much more enriched in PM2.5 samples of the study site. To the contrary, the results of the correlation analysis showed that PM2.5 concentrations can exhibit more enhanced correlations with the elements (e.g., Fe, K, Si, and Ti) arising from earth's crust. The findings of strong correlations between PM2.5 and the elements of crustal origin may be directly comparable with the dominant role of those species by constituting a major fraction of even PM2.5 as well as PM10 at the roadside area.

Determination of Total Arsenic in Drinking Water by Inductively Coupled Plasma-Mass Spectrometry (유도결합 플라스마 질량 분석법(ICP-MS)을 이용한 음용수 중의 전체 비소의 정량)

  • Lim, Yoo-Ree;Park, Kyung-Su;Yoon, Yang-Hee;Kim, Sun-Tae;Chung, Jin-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.423-427
    • /
    • 2000
  • Total arsenic in drinking water such as spring, small water-supply system and mineral water was determined by inductively coupled plasma mass spectrometry. The contents of total arsenic were analyzed after acidification by nitric acid to become 1% in water samples. According to the results, total concentration of arsenic in drinking water was below 30ppb.

  • PDF

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS (후 컬럼 동위원소 희석법을 적용한 HPLC-ICP/MS에서의 정량분석에서 내부 표준물을 이용한 정확도와 정밀도의 개선연구)

  • Joo, Mingyu;Park, Myungsun;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2014
  • An internal standard was used in PCID (post column isotope dilution) to improve the accuracy and precision in quantification of various chemical species. The error occurring in the column was the largest in HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry) when PCID and other traditional quantification methods were compared with each other. Internal standard was effective in correcting the loss of sample in the column to improve accuracy and precision. When applied to SeMet, using MeSecys or $Se^{4+}$ as an internal standard, relative errors were reduced from 31% and 13% to less than 1%, while standard deviations were reduced from 5.1% and 6.9% to 1.5% and 0.2%, respectively. Positive aspects of using an internal standard in PCID were compared with other quantitative techniques and discussed in detail.

Bioavailability of Tripotassium Dicitrato Bismuthate by ICP-MS in Human Volunteers (ICP-MS를 사용한 구연산비스마스칼륨 (Tripotassium dicitrato bismuthate)의 생체이용률 측정)

  • Kwon, Oh-Seung;Kwon, Jee-Young;Yoon, Ae-Rin;Park, Kyung-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.79-84
    • /
    • 2007
  • This study was aimed to establish analytical method of Bi to develop a guideline of the bioequivalence test of tripotassium dicitrato bismuthate (TDB). For this purpose, a simple, specific and sensitive inductively coupled plasma-mass spectrometry (ICP/MS) method were developed and validated in human plasma. Various concentrations of bismuth standard solution (0-25ng/mL) were prepared with distilled water and human blank plasma. To 10mL of the volumetric flasks, 2mL of blank plasma was added with 8ml of distilled water. Bi standard solution was added to prepare the calibration samples and injected into ICP-MS. The plasma samples obtained from volunteers given 3 tablets of bismuth (total 900mg as TDB) were analyzed as described above. As a result, the coefficients of variation were <20% in quantitation limit (0.2 ng/mL) and <15% at the rest of concentrations. The stability test by repeated freezing-thawing cycles showed that the samples were stable only for 24hr. The stability tested for samples with a short-term period of storage at room temperature and pre-treatment prior to the analysis showed very stable over 24hr. In 8 healthy Korean subjects received Denol tablets at the dose of 900mg bismuth, AUC, $C_{max},\;T_{max}$ and half-life $(t_{1/2})$ were determined to be $198.33{\pm}173.78 ng{\cdot}hr/mL,\;64.48{\pm}27.06 ng/mL,\;0.52{\pm}0.21 hr,\;and\;5.15{\pm}2.67 hr$, respectively, from the plasma bismuth concentration-time curves. In conclusion, the method was suitable for the determination of bismuth in human plasma samples and could be applied to bioequivalence test of bismuth tablet.

A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS (HPLC-ICP/MS에서 후 컬럼 동위원소 희석법의 기초적인 불확도 연구)

  • Joo, Mingyu;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.269-276
    • /
    • 2014
  • A short study for the uncertainty of post column isotope dilution method has been performed for the analysis of Selenomethionine in HPLC-ICP/MS. Major error sources studied were concentration and the flow rate of Se isotope solution, atomic weights of Se in spike and sample, and isotope ratio measured for the spiked sample. Uncertainties were obtained for each factor and the contribution for the total concentration uncertainty was 54.4% and 0.61%, 0.0072% and 0.018%, and 45.0%, respectively. The biggest contribution factor was concentration of the spike solution and the second was the isotopic ratio measured for the spiked sample solution. The mass flow rate of spike and atomic weights did not show much contribution. The calculated total uncertainty was $1.46ng{\cdot}g^{-1}$ for the standard SeMet ($126.30ng{\cdot}g^{-1}$). The experimental result was $127.09{\pm}1.46ng{\cdot}g^{-1}$ and the relative uncertainty was 1.20%.