A Forbush decrease(FD) is a depression of cosmic ray intensity observed by ground-based neutron monitors(NMs). The cosmic ray intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection(ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of NM station. However, sometimes NMs of the almost same rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on cosmic ray intensity depression rate of FD event recorded at different NMs due to different ICME propagation direction as an additional parameter in the model explaining the cosmic ray modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We confirm that the asymmetric cosmic ray decreasing modulations of FD events are determined by the propagation directions of the associated ICMEs.
We examine whether the observational stand-off distance ratios of CMEs and their associated ICMEs could be explained by theoretical model or not. For this, we select 16 CME-ICME pairs from September 2009 to October 2012 with the following conditions: (1) limb CMEs by SOHO and their associated ICMEs by twin STEREO spacecraft and vice versa when both spacecraft were roughly in quadrature; (2) the faint structure ahead of a limb CME is well identified; and (3) its associated ICME clearly has a sheath structure. We determine the observational stand-off distance ratios of the CMEs by using brightness profiles from LASCO-C2 (or SECCHI-COR2) observations and those of the ICMEs by solar wind data from STEREO-IMPACT/PLASTIC (or OMNI database) observations. We also determine the theoretical stand-off distance ratios of the CME-ICME pairs using semi-empirical relationship based on the bow shock theory. We find the following results. (1) Observational CME stand-off distance ratio decreases with increasing Mach number at the Mach numbers between 2 and 6. This tendency is consistent with the results from the semi-empirical relationship. (2) The observational stand-off distance ratios of several ICMEs can be explained by the relationship.
If all Coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. We select 34 CME-ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk centre. The helicity signs in the ARs are determined by estimation of accumulating amounts of helicity injections through the photospheric surfaces in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88%) are helicity sign-consistent events, while 4 events (12%) are sign-inconsistent. Through a detailed investigation of the AR solar origins of the 4 exceptional events, we find that those exceptional events can be explained by the local AR helicity sign opposite to that of the entire AR helicity (2000 July 28 ICME), incorrectly reported solar source in CDAW (2005 May 20 ICME), or the helicity sign of the pre-existing coronal magnetic field (2000 October 13 and 2003 November 20 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions where CMEs were erupted.
A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.
본 연구는 2004년은 한국에서 개최된 APCG 8(The 8th Asia-Pacific Conference on Giftedness, 2004)을 통하여 일반 영재교육의 최근 동향을 탐색하였다. 1980에서 2002년까지의 ERIC(Education Research Information Center)에 나타난 수학영재관련 문헌을 검색하여 644개를 선정 분석하여 그 연구 동향을 파악하고, 2003년에서 2004년까지는 ICME 10(the 10th International Congress on Mathematical Education, 2004)과 ICCME&EGS'03 (The Third International Conference Creativity in Mathematics Education and the Education of Gifted Students, 2003)을 통하여 수학영재교육의 최근 연구 동향을 분석하여 수학영재교육 발전과 활성화에 도움을 주는데 목적을 두고 있다.
Felix Klein profoundly influenced mathematical developments throughout the world by showing a new direction for modem geometry. He also influenced the lives of excellent scientists like Einstein by reforming mathematical education. The first Felix Klein medal of the Internal Commission on Mathematical Instruction was awarded at ICME-10 in July of 2004. In this article, we discuss Klein's Erlangen Program and investigate his influence on modem mathematics and mathematical education with this medal as momentum.
Trigonometric ratios are difficult concepts to teach and learn in middle school. One of the reasons is that the mathematical terms (sine, cosine, tangent) don't convey the idea literally. This paper deals with the understanding of a concept from the learner's standpoint, and searches the orientation of teaching that make students to have full understanding of trigonometric ratios. Such full understanding contains at least five constructs as follows: skill-algorithm, property-proof, use-application, representation-metaphor, history-culture understanding [Usiskin, Z. (2012). What does it mean to understand some mathematics? In: Proceedings of ICME12, COEX, Seoul Korea; July 8-15,2012 (pp. 502-521). Seoul, Korea: ICME-12]. Despite multi-aspects of understanding, especially, the history-culture aspect is not yet a part of the mathematics class on the trigonometric ratios. In this respect this study investigated the effect of history approach on students' understanding when the history approach focused on the mathematical terms is used to teach the concept of trigonometric ratios in Grade 9 mathematics class. As results, the experimental group obtained help in more full understanding on the trigonometric ratios through such teaching than the control group. This implies that the historical derivation of mathematical terms as well as the context of mathematical concepts should be dealt in the math class for the more full understanding of some mathematical concepts.
Hans Freudenthal made important contributions to algebraic topology and geometry. He also made significant contributions in history of mathematics and mathematics education. In the 1970s, his intervention prevented the Netherlands from the movement of "new math". He had a very important role as a founder of realistic mathematics education and became famous internationally by that. Because he raised the profile of ICMI strongly, Bass used the expression 'Freudenthal Era' for the period that Freudenthal was the president of ICMI. Now many mathematics educator agree to use the Freudenthal Era when they mention about the history of ICMI. In this paper, we present on the life of Freudenthal and his contributions for mathematics education, especially ICMI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.