• Title/Summary/Keyword: ICI

Search Result 296, Processing Time 0.04 seconds

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.

Inter-carrier Interference Reduction Method Using Mask in a Fast Moving OFDM Receiver (고속 이동 OFDM 수신기에서 마스크를 이용한 반송파간 간섭 감소 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.474-480
    • /
    • 2013
  • In orthogonal frequency division multiplexing system (OFDM), rapid channel variation caused by fast moving receiver leads to a loss of subcarrier orthogonality which results in inter-carrier interference (ICI) and receiver performance degradation. In conventional receivers, performance is enhanced by estimating ICI and removing it from received signals. In this paper, an ICI reduction scheme using a time-domain mask and adding is proposed. The proposed scheme is applied to DVB-T receiver to prove the Doppler mobile performance enhancement.

Efficient ICI Self-Cancellation Scheme for OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.537-544
    • /
    • 2014
  • In this paper, we present a new inter-carrier interference (ICI) self-cancellation scheme - namely, ISC scheme - for orthogonal frequency-division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast-varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast-varying PHN and RFO is significantly suppressed. We also derive the carrier-to-interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.

ANALYSIS OF ICI FOR OFDM ON THE TWO-RAY FADING ENVIRONMENT (Two-ray 페이딩 환경에서 OFDM의 ICI 분석)

  • 정영모;이상욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.51-54
    • /
    • 1996
  • In this paper, an interchannel interference (ICI) and symbol error probability for orthogonal frequency division multiplexing (OFDM) on the two-ray fading environment are obtained analytically. From the analysis results, it is found that the ICI is a Gaussian random variable and its variance depends on the subchannel location, normalized time delay, and the number of subchannels. In addition, the OFDM signal without guard interveal is found to yield an irreducible error even at high signal to noise ratio due to the ICI.

  • PDF

Efficient Interference Alignment for Uplink MIMO/FDD Systems with Limited Feedback (제한된 궤환 채널 기반 상향링크 MIMO/FDD 시스템에서의 효율적인 간섭 정렬 기법)

  • Cho, Sung-Yoon;Jang, Jin-Young;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.988-996
    • /
    • 2012
  • Assuming perfect channel state information (CSI), the conventional interference alignment (IA) algorithm in the uplink cellular system suppresses inter-cell interference (ICI) by aligning ICI to a randomly selected reference vector. However, IA in practice relies on limited feedback between base stations and users, resulting in residual ICI. In this paper, we propose the optimization of the reference vector that minimizes the upper-bound of residual ICI power. Secondly, the iterative IA that designs the direction of transmit and receive filter is proposed to minimize the residual ICI as well as maximize the desired signals. Moreover, we propose the user scheduling method combined with proposed IA schemes which provides the multiuser diversity gain in multi-cell environments. Finally, the performance gain of the proposed IA algorithms compared with the existing IA are analyzed and demonstrated by simulation results.

The Clinical Usefulness of Halo Sign on CT Image of Trauma Patients (2세 미만 소아의 경도 두부 외상 후 두개골 골절 및 두개내 병변의 위험 인자)

  • Jeong, Jong Il;Kim, Ah Jin;Shin, Dong Wun;Rho, Jun Young;Kim, Kyung Hwan;Kim, Hong Yong;Park, Jun Seok
    • Journal of Trauma and Injury
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2007
  • Purpose: This research was performed to determine which clinical signs and symptoms of brain injury are sensitive indicators of skull fracture (SF) and intracranial injury (ICI) in head injured children. Methods: We conducted a prospective study of minor head trauma in children younger than 2 years of age for a 1-year period. Skull radiographs, brain computed tomography (CT), and data forms, including mechanism of injury, symptoms, physical findings, and hospital course, were completed for each child. Results: Of 137 study subjects, 17 (12.4%) had SF/ICI. Falls were the most common mechanism of injury, and heights of fall above 1 meter were associated with incidence of SF/ICI (p<0.05). Scalp abnormalities were not associated with incidence of SF/ICI. As for clinical symptoms, lethargy and a grouping of features (irritability & vomiting) were associated with incidence of SF/ICI (p<0.05). The incidence of seizure, loss of consciousness, vomiting, irritability, and scalp abnormality did not differ significantly between those with normal radiologic findings and those with SF/ICI. Among asymptomatic patients, 11 (14.5%) patients had SF/ICI, and among patients with normal scalp findings, 9 (12.7%) patients had SF/ICI. Conclusion: Clinical signs and symptoms, except for lethargy and a grouping of features (irritability & vomiting), were not sensitive predictors of SF/ICI. Nevertheless, SF/ICI occurred among normal children. In such a case, a liberal policy of CT scanning is warranted.

A Design of SINR Measurement Unit for IEEE 802.16m (IEEE 802.16m 시스템의 SINR 측정기의 설계)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1097-1104
    • /
    • 2010
  • This paper presents the signal-to-noise ratio (SNR) and signal-to-interference plus noise ratio (SINR) estimation based on A-Preamble of IEEE 802.16m IMT-Advanced WiMax system with simulation results. The downlink signal of IEEE 802.16m has two kinds of A-Preambles: the PA-Preamble and the SA-Preamble. This paper proposes the effective method of estimating SNR and SINR with A-Preambles, and also shows that this method can recognize the ICI(Inter-Carrier-Interference) occurrence due to doppler frequency. With the recognition of ICI, the mobile station can save the power by operating 1-tap equalizer in usual cases, and activating ICI mitigation module only when it perceives the ICI occurrence.

Performance Analysis of WFMT Modulation System Robust to ICI and Doppler Effect (부반송파간 간섭과 도플러 효과에 강한 WFMT 변조 방식의 성능 분석)

  • Kim, Seon-Ae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1137-1146
    • /
    • 2008
  • OFDM is very effective for the high speed communication system. However, OFDM has the problems of high PAPR and serious ICI, which is different from the single carrier system. Especially, ICI problem caused by phase noise, Doppler effect and frequency offset is main reason for poor performance since it breaks down the orthogonality between subcarriers in OFDM communication system. Therefore, WFMT modulation scheme is studied and the effect of the carrier frequency offset and phase noise is analyzed. WFMT modulation scheme is based on the wavelet theory and complex filter banks for synthesis and analysis of multichannel signal. WFHT modulation scheme keeps on the advantage of filter banks system and can be easily possible for the implementation of filter banks. In this paper, we compare ISI and ICI distortions of the WFMT and OFDM system due to the carrier frequency offset and phase noise. Also, we analyze the PAPR and BER performances in the HPA and ICI situation caused by the Doppler frequency shift and the frequency offset.

A Study on the Bandwidth Efficient Self-Cancellation Scheme of Interchannel Interference (ICI) For OFDM Transmission Systems

  • Kim, Gi-Rae;Chung, Yeon-Do
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • This paper presents a bandwidth efficient self-cancellation scheme for interchannel interference (ICI) in OFDM transmission systems. Conventional self-cancellation schemes provide an excellent cancellation capability of ICI for relatively low frequency offsets. However, this capability is achieved at the expense of bandwidth efficiency and thus a higher modulation level is often used to compensate for desired throughput. By applying a partial differential coding (PDC) to the transmit data prior to the ICI self-cancellation, bandwidth efficiency is greatly improved by a factor of 2, while maintaining a string of data (+1, -1) alternately for the ICI. self-cancellation in OFDM systems. Computer simulations show that the performance of the proposed scheme is comparable to the conventional self-cancellation scheme with slight performance degradation for relatively lower frequency offsets.

Game Theoretic based Distributed Dynamic Power Allocation in Irregular Geometry Multicellular Network

  • Safdar, Hashim;Ullah, Rahat;Khalid, Zubair
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.199-205
    • /
    • 2022
  • The extensive growth in data rate demand by the smart gadgets and mobile broadband application services in wireless cellular networks. To achieve higher data rate demand which leads to aggressive frequency reuse to improve network capacity at the price of Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been recognized as an effective scheme to get a higher data rate and mitigate ICI for perfect geometry network scenarios. In, an irregular geometric multicellular network, ICI mitigation is a challenging issue. The purpose of this paper is to develop distributed dynamic power allocation scheme for FFR based on game theory to mitigate ICI. In the proposed scheme, each cell region in an irregular multicellular scenario adopts a self-less behavior instead of selfish behavior to improve the overall utility function. This proposed scheme improves the overall data rate and mitigates ICI.