• Title/Summary/Keyword: IBAD-MgO

Search Result 45, Processing Time 0.038 seconds

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.

Optical investigation of high critical-current $Gd_{1+x}Ba_{2-x}Cu_3O_7$ coated conductors

  • Kim, G.;Jo, W.;Park, D.Y.;Cheong, H.;Shin, G.M.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.24-26
    • /
    • 2008
  • [ $Gd_{1+x}Ba_{2-x}Cu_3O_7$ ] (GdBCO) coated conductors on IBAD-MgO templates have grown by pulsed laser deposition. Critical current of the films were measured as about 90 A/cm by a four-probe method. The optical response of the films was investigated by Raman scattering spectroscopy. According to the Raman scattering spectra, the peaks at $328\;cm^{-1}$, $451\;cm^{-1}$, $504\;cm^{-1}$ were found and assigned to one $B_{1g}$ mode and two $A_{1g}$ modes, respectively. The high critical-current carrying behaviors of the GdBCO coated conductors are ascribed to their 123-structure without exchange of cation and incorporation of oxygen into the cuprates.

Reactive Co-Evaporation of YBCO for Coated Conductors

  • Matias, V.;Hanisch, J.;Sheehan, C.;Ugurlu, O.;Storer, J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • We describe methods for depositing high temperature superconducting films on textured metal tapes by reactive co-evaporation (RCE). We discuss how RCE can be used to deposit on moving tape in a continuous fashion in a Garching-style process. Results are presented on films deposited by RCE at Los Alamos on IBAD-MgO textured tapes. The performance achieved, attaining over 500A/cm-width in self-field at 75.5 K, is competitive with the best results obtained by other processes for coated conductors. Tape production throughput is critical for the economics of the process and high deposition rates achieved in RCE are attractive for this. We present a detailed cost analysis model for HTS deposition using an RCE Garching process. The results indicate that HTS deposition can cost $<$5/kA{\cdot}m$ in a scaled up manufacturing environment.

A study of standardizing Critical-Current Measurements for coated conductor I (고온초전도 coated conductor의 임계전류 측정 표준화 연구 I)

  • Oh, Sang-Soo;Lee, Nam-Jin;Kim, Ho-Sup;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.363-364
    • /
    • 2009
  • For the application of superconductor technology, we need critical properties of superconductors such as a critical current ($I_c$). $I_c$ is varied as processing method by action of flux pinning center. Our research activities are reported on the establishment of standard measurement method for critical current in coated conductor. And then, we researched pre-studies for standardization of critical current evaluation method using IEC/TC 90 standard.

  • PDF

A unhomogeneity of critical current at the long length coated conductors (Coated conductor에서 임계전류의 불균일)

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Tae-Hyung;Moon, Seung-Hyun;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.1-2
    • /
    • 2009
  • The high critical current ($I_c$, A) of SmBCO coated conductor in a magnetic field, the high production rate and the high material yield are promising for applications. The inhomogeneity of Ie at the long length coated conduct is very important problem for electric application. So we researched the reason of inhomogeneity of $I_c$ at long length tape prepared by batch type co-evaporation system called by EDDC. The long length SmBCO coated conductors were developed on $LaMnO_3/IBAD-MgO/Y_2O_3/Al_2O_3$/Hastelloy C276 template. The distribution of $I_c$ are from 0 to 397 A/cm at 77 K and self field. We have studied the microstructures of these films by using SEM, EDS and X-ray diffraction. The XRD and composition by EDS results of SmBCO film reveals subtle difference. But, the microscopic observation by SEM show the microcrack at the sample with low $I_c$.

  • PDF

Progress in research and development for REBCO coated conductors by reactive co-evaporation

  • Oh, S.S.;Kim, H.S.;Ha, H.S.;Ko, R.K.;Ha, D.W.;Lee, H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.1-5
    • /
    • 2013
  • This paper reviews recent progress in research and development (R&D) of reactive co-evaporation for high performance REBCO coated conductors in Korea. Two types of reactive co-evaporation methods were developed for the deposition of SmBCO and GdBCO superconducting layers respectively on the IBAD (Ion Beam Assisted Deposition)-MgO template in the Korean coated conductor project. Batch type reactive co-evaporation equipment and its processing were developed for SmBCO coated conductors at Korea Electrotechnology Research Institute (KERI) in conjunction with the Korea Advanced Institute of Science and Technology (KAIST), and a very high critical current exceeding 1,000 A/cm at 77 K in the self field was achieved through the optimization of deposition parameters. Reel-to-reel type reactive co-evaporation processing with a high conversion rate was also developed, while long length GdBCO coated conductors have been routinely produced by SuNAM Co. The minimum critical current of 422 A/cm-w at 77 K in self field was confirmed for 1 km-long GdBCO tape.