• Title/Summary/Keyword: IBAD-MgO

Search Result 45, Processing Time 0.028 seconds

Deposition of YBCO/BaZrO$_3$ films on MgO single crystal substrates by pulsed laser deposition (펄스레이저법으로 MgO 단결정 기판위에 YBCO/BaZrO$_3$ 박막의 증착)

  • Chung Jun-Ki;Ko Rock-Kil;Kim Hosup;Ha Hong-Soo;Song Kyu-Jeong;Moon Seung-Hyun;Yoo Sang-Im;Kim Cheol-Jin;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.12-15
    • /
    • 2004
  • There are two major approaches to obtain texture template for HTS coated conductor (CC) ---IBAD and RABiTS. CC's with IBAD template showed both longer and higher Ic results so far. IBAD for CC began with YSZ, the processing of which is very slow compared to other processings needed for the fabrication of CC. Because of this very slow processing speed, IBAD with other materials such as Gd$_2$Zr$_2$O$_{7}$(GZO) and MgO have been developed. The processings of IBAD-GZO and IBAD-MgO are known to be up to 3times and 100 times. respectively, as fast as the processing of IBAD-YSZ. IBAD-MgO is very attractive in that the processing is very fast. IBAD-MgO also needs additional buffer layer(s). Many materials are being investigated to be used as a buffer layer on top of the MgO. BaZrO$_3$ (BZO) is a good candidate as the buffer layer on top of the IBAD-MgO because it is chemically stable and does not react with YBCO at high temperatures. It also has good lattice match with MgO. The BZO film has been deposited on single crystal MgO, and YBCO film was deposited on BZO/MgO to investigate the possibility of using BZO as both the buffer and capping layer of the CC.C.

Fabrication of IBAD-MgO template by continuous reel-to-reel process (연속 reel-to-reel 공정을 이용한 IBAD-MgO template 제조)

  • Ko, K.P.;Ha, H.S.;Kim, H.K.;Yu, K.K.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • Highly textured MgO template by ion-beam-assisted deposition(IBAD) was successfully fabricated using a continuous reel-to-reel(R2R) mode. To enlarge the deposition area, the previous IBAD system was modified into the system with 14-pass and five heating zone. Every processing step was carried out using this multi-turn IBAD system. The overall process consists of R2R electropolishing of a hastelloy C276 tape, deposition of $Al_2O_3$ diffusion barrier, $Y_2O_3$ seed layer, IBAD-MgO and homoepi-MgO layer. The IBAD-MgO templates were fabricated using the IBAD system with 216 cm-length deposition zone and 32 cm diameter ion source. The texture of MgO films developed during the IBAD process was monitored by in-situ reflection high energy electron diffraction(RHEED) to optimize the IBAD process. Recently, 100 m long IBAD-MgO tape with in-plane texture of $\Delta{\phi}<10^{\circ}$ was successfully fabricated using the modified IBAD system. In this report, the detailed deposition condition of getting a long length IBAD-MgO template with a good epitaxy is described.

Comparative study of various buffer layers on IBAD- MgO template (IBAD-MgO 기판 위 다양한 완충층들의 비교 연구)

  • Ko, K.P.;Jang, K.S.;Yoo, S.I.;Oh, S.S.;Ko, R.K.;Moon, S.H.;Kim, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.5-8
    • /
    • 2008
  • On highly-textured IBAD-MgO templates, we have tried to find proper buffer layers among various candidate materials, including $LaMnO_3$ (LMO), $La_2Zr_2O_7$ (LAO), $LaAlO_3$ (LAO), $LaGaO_3$ (LGO), $NdGaO_3$ (NGO), and $BaZrO_3$ (BZO). All buffer layers were deposited on the IBAD-MgO templates by KrF pulsed laser deposition(PLD). LAO layer showed an armorphous phase. LZO, LGO, and NGO layers showed polycrystalline growth. Only LMO and BZO layers exhibited c-axis oriented biaxially textured films. Optimally processed LMO buffer layer at deposition temperature of $750^{\circ}C$ and $PO_2$ of 100mTorr exhibited ${\triangle}{\phi}$ value of ${\sim}-5.2^{\circ}$ and RMS roughness of 5.6nm. Interestingly, BZO buffer layers with ${\triangle}{\phi}$ values of ${\sim}-6^{\circ}$ could be routinely produced over a wide PLD processing condition.

Deposition of IBAD-MgO for superconducting coated conductor (초전도 박막선재용 IBAD-MgO 박막 증착)

  • Ha, Hong-Soo;Kim, Hyo-Kyum;Yang, Ju-Saeng;Ko, Rock-Kil;Kim, Ho-Sup;Oh, Sang-Soo;Song, Kyu-Jeong;Park, Chan;Yoo, Sang-Im;Joo, Jin-Ho;Moon, Seong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.282-283
    • /
    • 2005
  • Ion beam assisted deposition(IBAD) technique was used to produce biaxially textured polycrystalline MgO thin films for high critical current YBCO coated conductor. Hastelloy tapes were continuous electropolished with very smooth surface for IBAD-MgO deposition, RMS roughness of Hastelloy tape values below 2 nm and local slope of less than $1^{\circ}$. After the polishing of the tape an amorphous $Y_2O_3$ and $Al_2O_3$ are deposited Biaxially textured MgO was deposited on amorphous layer bye-beam evaporation with a simultaneous bombardment of high energy ions. We had developed the RHEED to measure in-situ biaxial texture of film surface as thin as tens angstrom. And also ex-situ characterization of buffer layers was studied using XRD and SEM. The full-width at half maximum(FWHM) out of plane texture of IBAD-MgO template is $4^{\circ}$.

  • PDF

High-$J_c$ $GdBa_2Cu_3O_y$ films on $BaHfO_3$ buffered IBAD MgO template ($BaHfO_3$ 완충층을 사용한 IBAD MgO 기판 위에 제조된 고임계전류밀도의 $GdBa_2Cu_3O_y$ 박막)

  • Ko, K.P.;Lee, J.W.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • The $BaHfO_3$ (BHO) buffer layer on the IBAD MgO template was turned to be effective for a successful fabrication of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films with high critical current density ($J_c$). Both the BHO buffer layers and GdBCO films were prepared by pulsed laser deposition (PLD). The effects of the PLD conditions, including substrate temperature ($T_s$), oxygen partial pressure ($PO_2$), and deposition time on the in-plane texture, surface roughness, and microstructures of the BHO buffer layers on the IBAD MgO template were systematically studied for processing optimization. The c-axis oriented growth of BHO layers was insensitive to the deposition temperature and the film thickness, while the in-plane texture and surface roughness of those were improved with increasing $T_s$ from 700 to $800^{\circ}C$. On the optimally processed BHO buffer layer, the highest $J_c$ value (77 K, self-field) of 3.68 $MA/cm^2$ could be obtained from GdBCO film deposited at $780^{\circ}C$, representing that BHO is a strong candidate for the buffer layer on the IBAD MgO template.

MOD-processed YBCO coated conductors on the $CeO_2$-buffered IBAD-MgO template

  • Shin, G.M.;Ko, R.K.;Oh, S.S.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2009
  • YBCO coated conductors (CC) on the $CeO_2$-buffered IBAD-MgO template were fabricated by metal-organic deposition (MOD) Process with Ba-trifluoroacetate and fluorine-free Y and Cu precursor materials. The precursor solution was coated on $CeO_2$-buffered IBAD MgO templates using the multiple dip-coating method, decomposed into inorganic precursors by pyrolysis up to $400^{\circ}C$ within 3 h, and finally fired at $740{\sim}800^{\circ}C$ in a reduced oxygen atmosphere. Microstructure, texture, and superconducting properties of YBCO films were found highly sensitive to both the firing temperature and time. The high critical current density ($J_C$) of $1.15\;MA/cm^2$ at 77.3K in the self-field could be obtained from $1\;{\mu}m$ thick YBCO CC, fired at $740^{\circ}C$ for 3.5 h, implying that high performance YBCO CC is producible on IBAD MgO template. Further enhancement of $J_C$ values is expected by improving the in-plane texture of $CeO_2$-buffer layer and avoiding the metal substrate contamination.

IBAD-MgO technology for coated conductors

  • Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • Ion-beam assisted deposition (IBAD) technology has been successfully applied to high-temperature superconductor coated conductors (CC) as textured substrates. Since the coated conductors were proposed as a potential framework for utilizing the superior transport characteristics of $YBa_2Cu_3O_7$ and related cuprate oxides, several methods including rolling-assisted bi-axial textured substrates (RABiTS) and inclined substrate deposition (ISD), as well as IBAD, have been attempted. As of 2016, most companies that are trying to commercialize CC adapt IBAD technology except for American Superconductors who use RABiTS predominantly. For the materials in the IBAD process, initial efforts to use yttria-stabilized zirconia (YSZ) or related fluorites in Fujikura in Japan have quickly given way to MgO which technique was developed by Stanford University in the USA. In this review, we present a historical overview of IBAD technology, in particular, for the application of CC. We describe the key scientific understanding of nucleation, the texturing mechanism, and the growth of large bi-axial grains and discuss some potential new IBAD materials and systems for large-scale production.

Evaluation of the MgO Protective Layer Deposited by Oxygen Ion-Beam-Assisted-Deposition Method in ac PDPs

  • Li, Zhao-Hui;Cho, Eou-Sik;Hong, Seong-Jae;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1372-1375
    • /
    • 2007
  • MgO thin films were deposited by $O^+$ IBAD method and results showed assisting oxygen ion beam energy plays a significant role in characteristics of MgO thin films. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when oxygen ion beam energy was 300 eV.

  • PDF

Fabrication of long SmBCO coated conductor on IBAD-MgO template using co-evaporation method (동시증발법을 이용한 SmBCO/IBAD-MgO 박막 장선재 제조)

  • Ha, H.S.;Kim, H.S.;Ko, R.K.;Yoo, K.K.;Yang, J.S.;Kim, H.K.;Jung, S.W.;Lee, J.H.;Lee, N.J.;Kim, T.H.;Song, K.J.;Ha, D.W.;Oh, S.S.;Youm, D.;Park, C.;Yoo, S.I.;Moon, S.H.;Joo, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.241-241
    • /
    • 2007
  • We fabricated SmBCO coated conductors(CCs) on IBAD-MgO templates using co-evaporation method. IBAD-MgO templates consist of PLD-LMO/epi-MgO/IBAD-MgO/Ni-alloy and showed good in-plane texture of below FWHM 7 degree. Evaporation rates of Sm, Ba, and Cu were precisely controlled to get the optimum composition ratio after deposition process. To optimize the oxygen partial pressure of reaction region, wide range of the partial pressure was investigated from 1 mTorr to 15 mTorr. By reducing the oxygen partial pressure to 5mTorr, (103)grains in SmBCO layer have been increased. On the other hand, there were only (001)grains in SmBCO layer deposited at 15 mTorr $O_2$. Deposition temperature was also investigated from $600^{\circ}C\;to\;800^{\circ}C$ to make high Ic SmBCO CCs. SmBCO on IBAD MgO template showed that the Ic increased gradually at higher growth temperature to $800^{\circ}C$, which the highest Jc and Ic is $2.6\;MA/cm^2$ and 500 A/cm-w., respectively.

  • PDF