• Title/Summary/Keyword: IAA

Search Result 645, Processing Time 0.032 seconds

Metal Complexes of Ambidentate Ligand(Ⅳ). Nickel(Ⅱ) and Palladium(Ⅱ) Complexes of bis(isonitrosoacetylacetone)diimine Derivatives (Ambidentate 리간드의 금속착물 (제 4 보). Bis(isonitrosoacetylacetone)diimine 유도체를 리간드로 하는 니켈(Ⅱ) 및 팔라듐(Ⅱ) 착물)

  • Man-Ho Lee;Seon-Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.428-435
    • /
    • 1988
  • Some nickel(Ⅱ) and palladium(Ⅱ) complexes of the ambidentate ligands derived from condensation of the isonitrosoacetylacetone and various diamines, $Ni(IAA)_2-en$, $Ni(IAA)_2-pn$, $Ni(IAA)_2-tn$, $Pd(IAA)_2-en$, PdCl(IAA)-pn, and $Pd(IAA)_2$-tn, where (IAA)$_2$-en, $(IAA)_2$-tn, and (IAA)-pn represent N,N'-enthylenbis(isonitrosoacetylacetone imine), N,N'-propylenebis(isonitrosoacetylacetone imine), N,N'-trimethylenebis(isonitrosoacetylacetone imine) and N-(2-aminopropyl)isonitrosoacetylacetone imine, respectively, have been prepared. The nickel(Ⅱ) and palladium(Ⅱ) complexes were characterized on the bases of the elemental analysis, IR, NMR, and electronic spectra. It is suggested that a isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the nitrogen atom to form five-membered ring, while the other isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the oxygen atom to form six membered ring in square-planar complexes of Ni(IAA)$_2$-tn and Pd(IAA)$_2$-en. And two isonitroso groups of (IAA)$_2$-en, (IAA)$_2$-pn, or (IAA)$_2$-tn coordinate to the metal ion through the nitrogen atom to form five-membered rings in square-planar complexes of Ni(IAA)$_2$-en, Ni(IAA)$_2$-pn, and Pd(IAA)$_2$-tn. On the other hand, square-planar PdCl(IAA)-pn is formed by the reaction of propylenediamine with a isonitrosoacetylacetone in the presence of palladium(Ⅱ)ion.

  • PDF

Interactions between Biosynthetic Pathway and Productivity of IAA in Some Rhizobacteria (근권에서 분리한 세균의 IAA 생합성 경로와 IAA 생성능과의 관계)

  • Kim, Woon-Jin;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study explores the interaction between the production of indole-3-acetic acid (IAA), a typical phytohormone auxin and the role of IAA biosynthetic pathways in each IAA producing rhizobacterial strain. The bacterial strains were isolated from rhizosphere of wild plants and identified as Acinetobacter guillouiae SW5, Bacillus thuringiensis SW17, Rhodococcus equi SW9, and Lysinibacillus fusiformis SW13. A. guillouiae SW5 exhibited the highest production of IAA using tryptophan-dependent pathways among the 4 strains. When indole-3-acetamide (IAM) was added, Rhodococcus equi SW9 showed the highest IAA production of $3824{\mu}g/mg$ protein using amidase activity. A. guillouiae SW5 also showed the highest production of IAA using two pathways with indole-3-acetonitrile (IAN), and its nitrile hydratase activity might be higher than nitrilase. B. thuringiensis SW17 showed the lowest IAA production, and most of IAA might be produced by the amidase activity, although the nitrilase activity was the highest among 4 strains. The roles of nitrile converting enzymes were relatively similar in IAA synthesis by Lysinibacillus fusiformis SW13. Tryptophan-independent pathway of IAA production was utilized by only A. guillouiae SW5.

Involvement of hydrogen peroxide in the regulation of IAA level in plants (IAA수준의 조절에 미치는 과산화수소의 영향)

  • Park, Ro-Dong;Kim, Jeong-Bong;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.129-132
    • /
    • 1990
  • The role of hydrogen peroxide which is accumulated in plants under low temperature has been studied with respect to the regulation of physiological IAA level. At 10 mM of $H_2O_2$, accelerating effects of IAA on the elongation of Avena coleoptiles and the root Initiation of pea cuttings have been greatly inhibited. These inhibitions were reversed by introduction of catalase. The reaction of free IAA with Salkowski reagent was inhibited in the presence of $H_2O_2$, but that of IAA-glutamic acid was not, suggesting the inactivation of free IAA by $H_2O_2$. The data support that increase in the content of hydrogen peroxide under low temperature partially down-regulates the available IAA through inactivation of IAA.

  • PDF

IAA Synthesis and Polyamine Metabolism in Higher Plants: Effects of IAA on the Activity of Diamine Oxidase in Seedlings of Soybean (고등식물에서 IAA합성과 Polyamine 대사에 관한 연구: 대두의 유식물에서 IAA가 Diamine Oxidase의 활성에 미치는 영향)

  • 김도균
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.265-271
    • /
    • 1992
  • Vie investigated the effect of indole acetic acid (IAA) on diamine oxidase (DAO; EC 1.4.3.6) in the seedling of soybean (Glycine max L. forma Paldalkong). DAO activity was not detected in the resting soybean seeds. During germination it appeared in the elongating zone on day 3, increased up to day 4 and decreased thereafter. Endogenous IAA content has been shown the same pattern as DAO activity. However, cadaverine content was reduced on day 4. To investigate the effect of IAA on DAO activity, the segments of hypocotyl on day 3 were soaked in various concentration of IAA. The activity increased at low concentrations ($10^{-7}-10^{-6}M$) of 1M as compared to that of control but not at high concentrations ($10^{-5}-10^{-4}M$) of IAA. Differing from DAO activity, cadaverine content increased as concentrations of IAA increased. On the other hand, ethylene was induced by IAA at high concentrations. To study the effect of ethylene on DAO activity, we cotreated IAA and 2,S-Norbonadiene (NDE). In this case, DAO activity was not affected.fected.

  • PDF

Identification of Amino Acid Conjugates of Indole-3-acetic Acid in Etiolated Pea(Pisum sativum L.) Shoots (완두 유묘중 IAA-amino acid 복합체의 확인)

  • Park, Chang-Kyu;Park, Ro-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • To identify amino acid conjugates of indole-3-acetic acid(IAA) in plants, 23 amino acid conjugates of IAA were synthesized and characterized by UV and IR spectroscopies, and thinlayer and high performance liquid chromatographies. In etiolated pea(Pisum sativum L. var. Sparkle) shoots, aspartic and glutamic acid conjugates of IAA were tentatively identified as metabolites of endogenous IAA by thin-layer and high performance liquid chromatography, and by alkaline hydrolysis of the conjugates.

  • PDF

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2015
  • Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.

Effects of low temperature on the IAA degradation system in etiolated pea(Pisum sativum L. var. Sparkle) seedlings (백색 완두유묘의 IAA분해효소계에 미치는 저온의 영향)

  • Park, Ro-Dong;Shin, Yong-Kwang;Kim, Kwang-Sik;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.125-128
    • /
    • 1990
  • Previous work has shown that the levels of free and total IAA and tryptophan decrease on exposing etiolated pea (Pisum sativum L. var. Sparkle) seedlings grown at $25^{\circ}C$ to $5^{\circ}C$ for 3 days, suggesting that low temperature down-regulates the level of endogenous IAA, in part, by reducing tryptophan biosynthesis. To understand, in this study, the effect of low temperature on the regulation of IAA degradation system in etiolated pea seedlings, enzyme levels of IAA degradation system and hydrogen peroxide content were analyzed during and after chilling($5^{\circ}C$) 6-day-old pea seedlings grown at $25^{\circ}C$. The levels of IAA oxidase and peroxidase increased during chilling and gradually restored to the level of control on termination of chilling. Catalase levels decreased upon chilling and increased to the level of control on termination of chilling. $H_2O_2$ was accumulated during chilling up to the level of $5.5\;{\mu}mol/g$ fresh weight while at $25^{\circ}C$ maintained a relatively constant $H_2O_2$ level of $4\;{\mu}mol/g$ FW. All together, it appears that low temperature, in part, by increasing enzyme levels of IAA degradation system and accumulating $H_2O_2$, down-regulates endogenous level of IAA in etiolated pea shoots.

  • PDF

Identification of the Endogenous IAA Analogues in Pea(Pisum sativum L.) Shoots (백색(白色) 완두(豌豆) 유묘(幼苗)에서 IAA 유도체의 확인(確認))

  • Kim, Jeong-Bong;Park, Ro-Dong;Suh, Yong-Taik;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 1989
  • Tryptophan, indole-3-acetaldehyde, indole-3-acetic acid(IAA), and indole-3-aldehyde were identified as endogenous IAA analogues in etiolated pea(Pisum sativum L. var. 'Sparkle') shoots, which suggests a metabolic sequence(s) of tryptophan${\rightarrow}$(?)${\rightarrow}$indole-3-acetaldehyde${\rightarrow}$IAA${\rightarrow}$indole-3-aldehyde occurring in pea plants. IAA-rhamnose and IAA-glucose were tentatively confirmed as IAA conjugates.

  • PDF

Effects of Pre-sowing Seed Treatment with $GA_3$ and IAA on Flowering and Yield Components in Peanut (땅콩 종자의 $GA_3$ 및 IAA 침지처리가 개화 및 수량구성요소에 미치는 영향)

  • 이효승
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • This experiment was carried out to understand the effect of pre-sowing seed treatment by GA$_3$ and IAA on flowering and characteristics of yield component in peanuts. Peanut seed was treated by soaking in 10, 50, 100ppm of GA$_3$ solution, and 50, 100, 200ppm of IAA solution. Treatments of GA$_3$ and IAA resulted 7-5 days earlier emergence and 11-17days shorter of the flowering date compared with the untreated control. By soaking treatments with IAA in 100ppm and GA$_3$ in 100ppm, accumulated flowers were increased at early growing stage of 30 days after flowering compared with untreated control. By soaking treatments with IAA in 100ppm and GA$_3$ in 100ppm, main stem length, branch length and internode of main stem showed to flourish at investigation from early growing stage to 3 days before harvesting.

  • PDF

Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development (식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향)

  • Boruah, Hari P. Deka;Chauhan, Puneet S.;Yim, Woo-Jong;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.96-104
    • /
    • 2010
  • A comparative study was performed in gnotobiotic and greenhouse conditions to evaluate the effect of exogenous application of indole-3-acetic acid (IAA) and inoculation of Methylobacterium spp. possessing 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and IAA activity on red pepperand tomato seedling growth and development. Application of 1.0 ${\mu}g\;mL^{-1}$ IAA positively influenced root growth while high concentrations (>10.0 ${\mu}g\;mL^{-1}$) suppressed root growth of red pepper and tomato under gnotobiotic condition. On the other hand, inoculation of Methylobacterium strains with ACCD activity and IAA or without IAA enhanced root growth in both plants. Similarly, under greenhouse condition the inoculation of Methylobacterium sp. with ACCD activity and IAA enhanced plant fitness recorded as average nodal length and specific leaf weight (SLW) but the effect is comparable with the application of low concentrations of IAA. Seedling length was significantly increased by Methylobacterium strains while total biomass was enhanced by Methylobacterium spp. and exogenous applications of < 10.0 ${\mu}g\;mL^{-1}$ IAA. High concentrations of IAA retard biomass accumulation in red pepper and tomato. These results confirm that bacterial strains with plant growth promoting characters such as IAA and ACCD have characteristic effects on different aspects of growth of red pepper and tomato seedlings which is comparable or better than exogenous applications of synthetic IAA.