• Title/Summary/Keyword: I-max

Search Result 735, Processing Time 0.033 seconds

MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS

  • Xiang, Yueming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.611-622
    • /
    • 2010
  • A ring R is called left max-coherent provided that every maximal left ideal is finitely presented. $\mathfrak{M}\mathfrak{I}$ (resp. $\mathfrak{M}\mathfrak{F}$) denotes the class of all max-injective left R-modules (resp. all max-flat right R-modules). We prove, in this article, that over a left max-coherent ring every right R-module has an $\mathfrak{M}\mathfrak{F}$-preenvelope, and every left R-module has an $\mathfrak{M}\mathfrak{I}$-cover. Furthermore, it is shown that a ring R is left max-injective if and only if any left R-module has an epic $\mathfrak{M}\mathfrak{I}$-cover if and only if any right R-module has a monic $\mathfrak{M}\mathfrak{F}$-preenvelope. We also give several equivalent characterizations of MI-injectivity and MI-flatness. Finally, $\mathfrak{M}\mathfrak{I}$-dimensions of modules and rings are studied in terms of max-injective modules with the left derived functors of Hom.

Dynamic Economic Load Dispatch Problem Applying Valve-Point Balance and Swap Optimization Method (밸브지점 균형과 교환 최적화 방법을 적용한 동적경제급전문제)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.253-262
    • /
    • 2016
  • This paper proposes a balance-swap method for the dynamic economic load dispatch problem. Based on the premise that all generators shall be operated at valve-points, the proposed algorithm initially sets the maximum generation power at $P_i{\leftarrow}P_i^{max}$. As for generator i with $_{max}c_i$, which is the maximum operating cost $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$ produced when the generation power of each generator is reduced to the valve-point $v_k$, the algorithm reduces i's generation power down to $P_{iv_k}$, the valve-point operating cost. When ${\Sigma}P_i-P_d$ > 0, it reduces the generation power of a generator with $_{max}c_i$ of $c_i=F(P_i)-F(P_i-1)$ to $P_i{\leftarrow}P_i-1$ so as to restore the equilibrium ${\Sigma}P_i=P_d$. The algorithm subsequently optimizes by employing an adult-step method in which power in the range of $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$ is reduced by 10; a baby step method in which power in the range of 10>${\alpha}{\geq}1$ is reduced by 1; and a swap method for $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$ of $P_i=P_i{\pm}{\alpha}$, in which power is swapped to $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$. It finally executes minute swap process for ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001}$. When applied to various experimental cases of the dynamic economic load dispatch problems, the proposed algorithm has proved to maximize economic benefits by significantly reducing the optimal operating cost of the extant Heuristic algorithm.

Balance-Swap Optimization of Economic Load Dispatch Problem using Quadratic Fuel Cost Function (이차 발전비용함수를 사용한 경제급전문제의 균형-교환 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • In this paper, I devise a balance-swap optimization (BSO) algorithm to solve economic load dispatch with a quadratic fuel cost function. This algorithm firstly sets initial values to $P_i{\leftarrow}P_i^{max}$, (${\Sigma}P_i^{max}$ > $P_d$) and subsequently entails two major processes: a balance process whereby a generator's power i of $_{max}\{F(P_i)-F(P_i-{\alpha})\}$, ${\alpha}=_{min}(P_i-P_i^{min})$ is balanced by $P_i{\leftarrow}P_i-{\alpha}$ until ${\Sigma}P_i=P_d$; and a swap process whereby $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_i+{{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}$ = 1.0, 0.1, 0.1, 0.01, 0.001 is set at $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$. When applied to 15, 20, and 38-generators benchmark data, this simple algorithm has proven to consistently yield the best possible results. Moreover, this algorithm has dramatically reduced the costs for a centralized operation of 73-generators - a sum of the three benchmark cases - which could otherwise have been impossible for independent operations.

A Swap Optimization for Dynamic Economic Dispatch Problem with Non-smooth Function (비평활 발전비용함수를 가진 동적 경제급전문제의 교환 최적화)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.189-196
    • /
    • 2012
  • This paper proposes Swap algorithm for solving Dynamic Economic Dispatch (DED) problem. The proposed algorithm initially balances total load demand $P_d$ with total generation ${\Sigma}P_i$ by deactivating a generator with the highest unit generation cost $C_i^{max}/P_i^{max}$. It then swaps generation level $P_i=P_i{\pm}{\Delta}$, (${\Delta}$=1.0, 0.1, 0.01, 0.001) for $P_i=P_i-{\Delta}$, $P_j=P_j+{\Delta}$ provided that $_{max}[F(P_i)-F(P_i-{\Delta})]$ > $_{min}[F(P_j+{\Delta})-F(P_j)]$, $i{\neq}j$. This new algorithm is applied and tested to the experimental data of Dynamic Economic Dispatch problem, demonstrating a considerable reduction in the prevalent heuristic algorithm's optimal generation cost and in the maximization of economic profit.

Performance of Mobile WiMAX Femtocell AP (Mobile WiMAX Femtocell 기지국의 성능 분석)

  • Hwang, Inyong;Kim, Hyungkee;Kim, Seokjoong
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.230-232
    • /
    • 2013
  • 본 논문에서는 실내 음영지역에서 사용되는 모바일 와이맥스의 펨토셀 기지국(WFAP; WiMAX Femtocell AP)에 대한 성능을 분석하였다. 시뮬레이션을 통해 와이맥스 펨토셀 기지국의 패킷에러율(PER), Outage, throughput을 확인하였다.

Physiologically-based pharmacokinetic predictions of intestinal BCRP-mediated drug interactions of rosuvastatin in Koreans

  • Bae, Soo Hyeon;Park, Wan-Su;Han, Seunghoon;Park, Gab-jin;Lee, Jongtae;Hong, Taegon;Jeon, Sangil;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • It was recently reported that the $C_{max}$ and AUC of rosuvastatin increases when it is coadministered with telmisartan and cyclosporine. Rosuvastatin is known to be a substrate of OATP1B1, OATP1B3, NTCP, and BCRP transporters. The aim of this study was to explore the mechanism of the interactions between rosuvastatin and two perpetrators, telmisartan and cyclosporine. Published (cyclosporine) or newly developed (telmisartan) PBPK models were used to this end. The rosuvastatin model in Simcyp (version 15)'s drug library was modified to reflect racial differences in rosuvastatin exposure. In the telmisartan-rosuvastatin case, simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without telmisartan) ratios were 1.92 and 1.14, respectively, and the $T_{max}$ changed from 3.35 h to 1.40 h with coadministration of telmisartan, which were consistent with the aforementioned report ($C_{maxI}/C_{max}$: 2.01, $AUC_I/AUC$:1.18, $T_{max}:5h{\rightarrow}0.75h$). In the next case of cyclosporine-rosuvastatin, the simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without cyclosporine) ratios were 3.29 and 1.30, respectively. The decrease in the $CL_{int,BCRP,intestine}$ of rosuvastatin by telmisartan and cyclosporine in the PBPK model was pivotal to reproducing this finding in Simcyp. Our PBPK model demonstrated that the major causes of increase in rosuvastatin exposure are mediated by intestinal BCRP (rosuvastatin-telmisartan interaction) or by both of BCRP and OATP1B1/3 (rosuvastatin-cyclosporine interaction).

Estimation of R factor using hourly rainfall data

  • Risal, Avay;Kum, Donghyuk;Han, Jeongho;Lee, Dongjun;Lim, Kyoungjae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.260-260
    • /
    • 2016
  • Soil erosion is a very serious problem from agricultural as well as environmental point of view. Various computer models have been used to estimate soil erosion and assess erosion control practice. Universal Soil loss equation (USLE) is a popular model which has been used in many countries around the world. Erosivity (USLE R-factor) is one of the USLE input parameters to reflect impacts of rainfall in computing soil loss. Value of R factor depends upon Energy (E) and maximum rainfall intensity of specific period ($I30_{max}$) of that rainfall event and thus can be calculated using higher temporal resolution rainfall data such as 10 minute interval. But 10 minute interval rainfall data may not be available in every part of the world. In that case we can use hourly rainfall data to compute this R factor. Maximum 60 minute rainfall ($I60_{max}$) can be used instead of maximum 30 minute rainfall ($I30_{max}$) as suggested by USLE manual. But the value of Average annual R factor computed using hourly rainfall data needs some correction factor so that it can be used in USLE model. The objective of our study are to derive relation between averages annual R factor values using 10 minute interval and hourly rainfall data and to determine correction coefficient for R factor using hourly Rainfall data.75 weather stations of Korea were selected for our study. Ten minute interval rainfall data for these stations were obtained from Korea Meteorological Administration (KMA) and these data were changed to hourly rainfall data. R factor and $I60_{max}$ obtained from hourly rainfall data were compared with R factor and $I30_{max}$ obtained from 10 minute interval data. Linear relation between Average annual R factor obtained from 10 minute interval rainfall and from hourly data was derived with $R^2=0.69$. Correction coefficient was developed for the R factor calculated using hourly rainfall data.. Similarly, the relation was obtained between event wise $I30_{max}$ and $I60_{max}$ with higher $R^2$ value of 0.91. Thus $I30_{max}$ can be estimated from I60max with higher accuracy and thus the hourly rainfall data can be used to determine R factor more precisely by multiplying Energy of each rainfall event with this corrected $I60_{max}$.

  • PDF

A Parallel Algorithm for Merging Relaxed Min-Max Heaps (Relaxed min-max 힙을 병합하는 병렬 알고리즘)

  • Min, Yong-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1162-1171
    • /
    • 1998
  • This paper presents a data structure that implements a mergable double-ended priority queue : namely an improved relaxed min-max-pair heap. By means of this new data structure, we suggest a parallel algorithm to merge priority queues organized in two relaxed heaps of different sizes, n and k, respectively. This new data-structure eliminates the blossomed tree and the lazying method used to merge the relaxed min-max heaps in [9]. As a result, employing max($2^{i-1}$,[(m+1/4)]) processors, this algorithm requires O(log(log(n/k))${\times}$log(n)) time. Also, on the MarPar machine, this method achieves a 35.205-fold speedup with 64 processors to merge 8 million data items which consist of two relaxed min-max heaps of different sizes.

  • PDF

A STUDY OF THE VARIANCES IN PRE- AND POST-TREATMENT DENTAL ARCH SHAPES IN EXTRACTION AND NON-EXTRACTION CASES (발치 및 비발치 치료증례에서의 치료전후 치열궁형태의 변화에 관한 연구)

  • Han, Hong;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.223-238
    • /
    • 1991
  • This study was carried out in order to findout the amount of tooth movement, the changes arch size and the changes in arch morphology following orthodontic treatment and to provide a guideline for to predict post-treatment arch morphology. The sample group for this study consists of 15 males and 22 females, totalling in 37 persons, who received orthodontic treatment at Orthodontic Department of Dankook Univ. Dental Hospital. They are classified into Extraction Class I treatment group (E I), Non-extraction Class I treatment group (N I), and Non-extraction Class III treatment group (N III), according to their pre-treatment malocclusion state and methods of treatment. Following conclusions and averaged dental arch form for each group were obtained by cephalometric linear measurements and dental arch measurements using pre- and post-treatment lateral cephalograms and plaster study models. 1. Intercanine width were reduced in max. of both EI and NI during the period of treatment, 2. Intermolar width were reduced in max. of EI and increased in max. of NI. Therefore although there was no difference between these two groups before the treatment, intermolar width of the max, of NI was wider than that of E1 after the treatment. 3. PMV-incisor distance and PMV-canine distance were decreased in both max. and mand. of EI and that of NI, during the period of treatment. PMV-molar distance was decreased in both max. and mand. of NI and in mand. of NIII. 4. Items that showed stability during the treatment were: max. & mand. PMV-molar distance, mand. intercanine and intermolar width in EI; mand. intercanine and intermolar width in NI; mand. & max. PMV-incisor distance, PMV-canine distance, max. PMV-molar distance and max. & mand. intercanine and intermolar width in NIII. 5. The differences in averaged canine and molar variances to post-treatment dental arch form were present only in EI and in NI. There was no variance between maxilla and mandible in each group.

  • PDF

Development and validation of Speech Range Profile task (발화범위 프로파일 과제 개발 및 타당성 검증)

  • Kim, Jaeock;Lee, Seung Jin
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • The study aimed to develop Speech Range Profile (SRP) and to examine and validate its clinical application. Forty-five participants without voice disorders aged 18-29 years were compared using SRP and Voice Range Profile (VRP). The authors developed the "Fire!" paragraph as a SRP task compromising 14 sentences including all Korean spoken phonemes and sentence types. To compare SRP and VRP results, the participants read the paragraph (reading) and counted from 21 to 30 (counting) as a part of SRP tasks, and produced a vowel /a/ from low to high frequencies (gliding) and a shortened form of the VRP as a part of VRP tasks. $F0_{max}$, $F0_{min}$, $F0_{range}$, $I_{max}$, $I_{min}$, and $I_{range}$ for each task were measured and compared, showing that $F0_{max}$, $F0_{min}$, $F0_{range}$, $I_{max}$, and $I_{range}$ were not different between reading and gliding. $I_{min}$, had the lowest value in counting. It is concluded that the newly developed SRP task, reading the "Fire" paragraph, can yield a maximum phonation range similar to that found by VRP. Therefore, it is expected that voice evaluation can be effectively performed in a relatively short time by applying SRP with the "Fire" paragraph, a functional utterance task, in place of VRP, which may be difficult to measure long term or in cases of severe voice disorders.