DOI QR코드

DOI QR Code

Dynamic Economic Load Dispatch Problem Applying Valve-Point Balance and Swap Optimization Method

밸브지점 균형과 교환 최적화 방법을 적용한 동적경제급전문제

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2015.08.28
  • Accepted : 2016.02.05
  • Published : 2016.02.29

Abstract

This paper proposes a balance-swap method for the dynamic economic load dispatch problem. Based on the premise that all generators shall be operated at valve-points, the proposed algorithm initially sets the maximum generation power at $P_i{\leftarrow}P_i^{max}$. As for generator i with $_{max}c_i$, which is the maximum operating cost $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$ produced when the generation power of each generator is reduced to the valve-point $v_k$, the algorithm reduces i's generation power down to $P_{iv_k}$, the valve-point operating cost. When ${\Sigma}P_i-P_d$ > 0, it reduces the generation power of a generator with $_{max}c_i$ of $c_i=F(P_i)-F(P_i-1)$ to $P_i{\leftarrow}P_i-1$ so as to restore the equilibrium ${\Sigma}P_i=P_d$. The algorithm subsequently optimizes by employing an adult-step method in which power in the range of $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$ is reduced by 10; a baby step method in which power in the range of 10>${\alpha}{\geq}1$ is reduced by 1; and a swap method for $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$ of $P_i=P_i{\pm}{\alpha}$, in which power is swapped to $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$. It finally executes minute swap process for ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001}$. When applied to various experimental cases of the dynamic economic load dispatch problems, the proposed algorithm has proved to maximize economic benefits by significantly reducing the optimal operating cost of the extant Heuristic algorithm.

본 논문은 경제급전 최적화 문제에 균형-교환 방법을 제안하였다. 제안된 알고리즘은 모든 발전기를 가능한한 밸브지점으로 운영한다고 가정한다. 초기치로 최대 발전량 $P_i{\leftarrow}P_i^{max}$로 설정하고, 각 발전기의 밸브지점 $v_k$까지 발전량을 감소시켰을 때의 평균 발전단가 $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$가 최대가 되는 $_{max}c_i$ 발전기 i의 발전량을 밸브지점 발전단가 $P_{iv_k}$로 감소시켰으며, ${\Sigma}P_i-P_d$ > 0이면 $c_i=F(P_i)-F(p_i-1)$$_{max}c_i$ 발전기 발전량을 $P_i{\leftarrow}P_i-1$로 감소시켜 ${\Sigma}P_i=P_d$의 균형을 맞추었다. 다음으로, $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$의 범위에 대해 "-10" 간격으로 감소시키는 성인걸음법으로, 10>${\alpha}{\geq}1$ 범위에 대해서는 "-1"의 아기걸음법으로, $P_i=P_i{\pm}{\alpha}$에 대한 $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$이면 $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$로 발전량을 교환하는 방법으로 최적화를 수행하였다. 다음으로 ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001$에 대해 미세한 교환을 수행하였다. 동적 경제급전 문제의 시험 사례에 제안된 알고리즘을 적용한 결과 기존의 휴리스틱 알고리즘 최적화 발전비용을 크게 감소시켜 경제적인 이익을 극대화 시켰다.

Keywords

References

  1. A. A. El-Fergany, "Solution of Economic Load Dispatch Problem with Smooth and Non-Smooth Fuel Cost Functions Including Line Losses Using Genetic Algorithm," International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, pp. 706-710, doi: 10.7763/IJCEE.2011.V3.407, Oct. 2011.
  2. P. Sriyangong, "A Hybrid Particle Swarm Optimization Solution to Ramping Rate Constrained Dynamic Economic Dispatch," World Academy of Science, Engineering and Technology, Vol. 47, pp. 374-379, 2008.
  3. P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, "A Hybrid EP and SQP for Dynamic Economic Dispatch with Non-smooth Fuel Cost Function," IEEE Trans. on Power System, Vol. 17, No. 2, pp. 411-416, doi: 10.1109/MPER. 2002.4312139, Apr. 2002.
  4. F. Li, R. Morgan, and D. Williams, "A Hybrid Genetic Approaches to Ramping Rate Constrained Dynamic Economic Dispatch," Electric Power System Research, Vol. 43, No. 2, pp. 97-103, doi: 10.1016/S0378-7796(97)01165-6, Nov. 1997.
  5. X. Yuan, L. Wang, Y. Yuan, Y. Zhang, B. Cao, and B. Yang, "A Modified Differential Evolution Approach for Dynamic Economic Dispatch with Valve Point Effects," Energy Conversion and Management, Vol. 49, No. 12, pp. 3447-3453, doi: 10.1016/j.enconman.2008.08.016, Dec. 2008.
  6. T. A. A. Victoire and A. E. Jeyakumar, "Reserve Constrained Dynamic Dispatch of Units With Valve-Point Effects," IEEE Trans. Power System, Vol. 20, No. 3, pp. 1273-1282, doi: 10.1109/TPWRS.2005.851958, Aug. 2005.
  7. S. Hemamalini and S. Simon, "Maclaurin Series-based Lagrangian Method for Economic Dispatch with Valve-point Effect," IET General Transmission Distribution, Vol. 3, No. 9, pp. 859-871, doi:10.1049/iet-gtd.2008.0499, Sep. 2009.
  8. T. A. A. Victoire and A. E. Jeyakumar, "A Modified Hybrid EP-SQP Approach for Dynamic Dispatch with Valve-point Effect," International Journal of Electrical Power & Energy Systems, Vol. 27, No. 8, pp. 594-601, doi:10.1016/j.ijepes.2005.06.006, Oct. 2005.
  9. T. A. A. Victoire and A. E. Jeyakumar, "Deterministically guided PSO for Dynamic Dispatch Considering Valve-point Effect," Electric Power Systems Research, Vol. 73, No. 3, pp. 313-322, doi:10.1016/j.epsr.2004.07.005, Mar. 2005.
  10. Y. Lu, J. Zhou, H. Qin, Y. Wang, and Y. Zhang, "Chaotic Differential Evolution Methods for Dynamic Economic Dispatch with Valve-point Effects," Engineering Applications of Artificial Intelligence, Vol. 24, No. 2, pp. 378-387, doi:10.1016/j.engappai.2010.10.014, Mar. 2011.
  11. H. Dakuo, G. Dong, F. Wang, and Z. Mao, "Optimization of Dynamic Economic Dispatch with Valve-point Effect using Chaotic Sequence based Differential Evolution Algorithms," Energy Conversion and Management, Vol. 52, No. 2, pp. 1026-1032, doi:10.1016/j.enconman.2010.0 8.031, Feb. 2011.
  12. P. Sriyanyong, "An Enhanced Particle Swarm Optimization for Dynamic Economic Dispatch Problem Considering Valve-Point Loading," In Proceeding of the Fourth IASTED International Conference on Power and Energy Systems (AsiaPES 2008), pp. 167-172, 2008.
  13. N. Nomana and H. Iba, "Differential Evolution for Economic Load Dispatch Problems," Electric Power System Research, Vol. 78, No. 8, pp. 1322-1331, doi:10.1016/j.epsr.2007.11.007, Aug. 2008.
  14. R. Balamurugan and S. Subramanian, "Differential Evolution-based Dynamic Economic Dispatch of Generating Units with Valve-point Effects," Electric Power Components and Systems, Vol. 36, Nop. 8, pp. 828-843, doi:10.1080/153250 00801911427, Jun. 2008.
  15. S. Hemamalini and S. P. Simon, "Dynamic Economic Dispatch using Maclaurin Series based Lagrangian Method," Energy Conversion and Management, Vol. 51, No. 11, pp. 2212-2219, doi:10.1016/j.enconman.2010.03.015, Nov. 2010.
  16. K. S. Hindi and M. R. Ab Ghani, "Dynamic Economic Dispatch for Large Scale Power Systems: A Lagrangian Relaxation Approach," Electric Power and Energy Systems, Vol. 13, No. 1, pp. 51-56, doi:10.1016/0142-0615(91)90018-Q, Feb. 1991.
  17. R. Balamurugan and S. Subramanian, "An Improved Differential Evolution based Dynamic Economic Dispatch with Non-smooth Fuel Cost Function," Journal of Electrical Systems, Vol. 3, No. 3, pp. 151-161, Sep. 2007.
  18. J. C. Lee, W. M. Lin, G. C. Liao, and T. P. Tsao, "Quantum Genetic Algorithm for Dynamic Economic Dispatch with Valve-point Effects and Including Wind Power System," Electrical Power and Energy Systems, Vol. 33, No. 2, pp. 189-197, doi:10.1016/j.ijepes.2010.08.014, Feb. 2011.
  19. X. S. Han, H. B. Gooi, and D. S. Kirschen, "Dynamic Economic Dispatch: Feasible and Optimal Solutions," IEEE Transactions on Power System, Vol. 16, No. 1, pp. 22-28, doi:10.1109/PESS.2001.970332, Feb. 2001.
  20. A. Rabiei, A. Soroudi, and B. Mohammadi, "Imperialist Competition Algorithm for Solving Non-convex Dynamic Economic Power Dispatch," Energy, Vol. 44, No. 1, pp. 228-240, doi:10.1016/j.energy.2012.06.034, Aug. 2012.
  21. S. U. Lee, "Improved Valve-Point Optimization Algorithm for Economic Load Dispatch Problem with Non-convex Fuel Cost Function," Journal of IIBC, Vol. 15, No. 6, pp. 257-266, doi:10.7236/JIIBC.2015.15.6.257, Dec. 2015.
  22. S. U. Lee, "A Swap Optimization for Dynamic Economic Dispatch Problem with Non-smooth Function," Journal of KSCI, Vol. 17, No. 11, pp. 189-196, doi:10.9708/jksci/2012.17.11.189, Nov. 2012.
  23. N. Sinha and B. Purkayastha, "PSO Embedded Evolutionary Programming Technique for Nonconvex Economic Load Dispatch", IEEE PES-Power Systems Conference and Exposition, Vol. 1, pp. 66-71, doi:10.1109/PSCE.2004.1397447, Oct. 2004.
  24. T. A. A. Victoire and A. E. Jeyakumar, "Hybrid PSO-SQP for Economic Dispatch with Valve-point Effect," Electric. Power Systems Research, Vol. 71, No. 1, pp. 51-59, doi:10.1016/j.epsr.2003.12.017, Sep. 2004.
  25. N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, "Evolutionary Programming Techniques for Economic Load Dispatch," IEEE Trans. on Evolutionary Computing, Vol. 7, No. 1, pp. 83-94, doi: 10.1109/TEVC.2002.806788, Feb. 2003.
  26. J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee, "A Particle Swarm Optimization for Economic Dispatch with Non-smooth Cost Function," IEEE Trans. Power System, Vol. 20, No. 1, pp. 34-42, doi:10.1109/TPWRS.2004.831275, Feb. 2005.
  27. L. S. Coelho and V. C. Mariani, "Combining of Chaotic Differential Evolution and Quadratic Programming for Economic Dispatch Optimization with Valve-Point Effect," IEEE Trans. on Power Systems, Vol. 21, No. 2, doi:10.1109/TPWRS.2006.873410, May 2006.
  28. A. I. Selvakumar, and K. Thanushkodi, "A New Particle Swarm Optimization Solution to Non-convex Economic Dispatch Problems," IEEE Trans. on Power Systems, Vol. 22, No. 1, pp. 42-51, doi:10.1109/TPWRS.2006.889132, Feb. 2007.
  29. J. B. Park, W. N. Lee, and J. R. Sin, "An Improved Particle Swarm Optimization for Economic Dispatch Problems with Non-Smooth Cost Functions," International Journal of Innovations in Energy Systems and Power, Vol. 1, No. 1, pp. 1-7, doi:10.1109/PES.2006.1709300, 2006.
  30. R. Goncalves, C. Almeida, J. Kuk, and M. Delgado, "Solving Economic Load Dispatch Problem by Natural Computing Intelligent Systems," 15th International Conference on Intelligent System Applications to Power Systems (ISAP), pp. 1-6, doi:10.1109/ISAP.2009.5352843, Nov. 2009.
  31. A. Khamseh and YY. Alinejad-Beromi, "Hybrid CLONAL Selection Algorithm with SA for Solving Economic Load Dispatch with Valve-Point Effect," Canadian Journal on Electrical and Electronics Engineering, Vol. 2, No. 10, pp. 463-467, 2011.
  32. P. H. Chen and H. C. Chang, "Large-Scale Economic Dispatch by Genetic Algorithm," IEEE Trans. on Power Systems, Vol. 10, No. 4, pp. 1919-1926, doi:10.1109/59.476058, Nov. 1995.