• Title/Summary/Keyword: I-PD Controller

Search Result 52, Processing Time 0.029 seconds

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

Robust Controller Design for Non-square Linear Systems Using a Passivation Approach (수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.907-915
    • /
    • 2002
  • We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Precision Position Control of Feed Drives (이송기구의 정밀 위치제어)

  • 송우근;최우천;조동우;이응석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.266-272
    • /
    • 1994
  • An essential ingredient in precision machining is a positioning system that responds quickly and precisely to very small input signal. In this paper, two different positioning systems were presented fot the precision positioning control. The one is a friction drive system, the other is a ballscrew system. The friction drive system was composed of an air sliding guide and a friction drive. The ballscrew system was made of a ballscrew and a linear guide. Nonlinear behaviors of the given systems tend to make the system inaccurate. The paper looked at the phenomena that has caused the positioning error. These apparently nonlinear phenomena can be attributed mainly to the presence of the nonlinear friction and slip effect plus the dynamic change from the microdynamic to the macrodynamic and form the macrodynamic to the microdynamic. For the control of the positioning system, the control algorithm based on a neural network is suggested. The FEL(Feedback Error Learning) controller can learn the inverse dynamics of a nonlinear system by using the neural network controller, and stabilize the system by a linear controller. In the experiment, PTP control is implemented withen the maximum error of 0.05 .mu.m ~0.1 .mu. m when i .mu.m step reference input is applied and that of maximum 1 .mu. m when 100 .mu.m step reference input is given. Sinusoidal inputs with the amplitude of 1 .mu.m and 100 .mu. m are used for the tracking control of the positioning system. Experimental results of the proposed algorithm are shown to be superior to those of conventional PD controls.

  • PDF

Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots (온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발)

  • Lee, Hyun-Dong;Myung, Byung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.602-608
    • /
    • 2011
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. The NN for the online feedback-error learning can composed that the input layer consists of six units for the inputs $x_i$, i=1~6, the hidden layer consists of two hidden units for hidden outputs $o_j$, j=1~2, and the output layer consists of two units for the outputs ${\tau}_k$, k=1~2. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels. The initial q value was set to [0, 5, ${\pi}$].

Swinging-up the Rotational Inverted Pendulum with Limited Sector of Arm Angle via Energy Control

  • Nundrakwang, Songmoung;Cahyadi, Adha I.;Isarakorn, Don;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2116-2119
    • /
    • 2005
  • Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus. Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by the PD control.

  • PDF

Construction of the position control system by a Neural network 2-DOF PID controller (신경망 2자유도 PID저어기에 의한 위치제어시스템 구성)

  • 이정민;허진영;하홍곤;고태언
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.378-385
    • /
    • 2000
  • In this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD , PID control system. but the position control system have difficulty in controling variable load and changing parameter. We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point. The back propagation algorithm of neural network used for tuning the 2-DOF parameter(${\alpha}$,${\beta}$,${\gamma}$,η). We investigate the 2-DOF PID control system in the position control system and verify the effectiveness of proposal method through the result of computer simulation.

  • PDF

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF

Design of 2-DOF PID control system by a Neural network (신경망에 의한 2 자유도 PID 제어기의 설계)

  • 허진영;김홍렬;하홍곤;고태언
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • In this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PID control system, but the position control system have difficulty in controling variable load and changing parameter. We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point. The back propagation algorithm of neural network used for tuning the 2-DOF parameter ($\alpha$, $\beta$, ${\gamma}$, η). We investigate the 2-DOF PID control system in the position control system and verify the effectiveness of proposal method through the result of computer simulation.

  • PDF

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

Robust Controller Design of Non-Square Linear Systems and Its Applications (비정방 선형 시스템의 강인 제어기 설계 및 그 응용)

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.189-197
    • /
    • 2003
  • The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.