• Title/Summary/Keyword: I-AFM

Search Result 229, Processing Time 0.034 seconds

Preparation of Nano Wire by Anodic Oxidation I. Characteristics of Alumina Nano-Template by Anodic Oxidation (양극산화법에 의한 나노와이어 제조I. 알루미나 나노 템플레이트의 특성)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2002
  • Anodic alumina layer can be used as templates for preparation of nano-structured materials, because porous oxide layer on aluminum shows a uniform pore size and a high pore density. In order to find out possibility for template material to prepare nano wire, the effects of the anodic applied potential, anodic time and the temperature of electrolyte on pore diameter of anodic alumina layer were studied using SEM and AFM. The pore diameter of anodic alumina layer increased with applied anodic potential and electrolytic temperature. Especially, the pore diameter of anodic oxide layers formed in chromic acid can be well replicated by widening process in $H_3$$PO_4$solution.

Improvement of Organic Electroluminescent Device Performance by $O_2$ Plasma Treatment of ITO Surface (ITO 박막의 $O_2$ 플라즈마 처리에 의한 휴지전기발광소자의 특성 향상)

  • Yang, Ki-Sung;Kim, Doo-Seok;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.137-140
    • /
    • 2004
  • We treated $O_2$ plasma on ITO thin film using RIE (Reactive Ion Etching) system, and analyzed the ingredient of ITO thin film according to change of processing conditions. The ingredient analysis of ITO thin film was used by EDS (Energy Dispersive Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) to compare and analyze the ingredient of bulk and surface. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM (Atomic Force Microscope). Finally, we fabricated OLEDs (Organic Light-Emitting Diodes) device using substrate that was treated optimum ITO surface. The result of the study for electrical and optical properties using I V L System (Flat Panel Display Analysis System), we confirmed that electrical properties (I-V) and optical properties (L-V) were improved.

  • PDF

Characteristics of a-IGZO TFTs with Oxygen Ratio

  • Lee, Cho;Park, Ji-Yong;Mun, Je-Yong;Kim, Bo-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.341.1-341.1
    • /
    • 2014
  • In the advanced material for the next generation display device, transparent amorphous oxide semiconductors (TAOS) are promising materials as a channel layer in thin film transistor (TFT). The TAOS have many advantages for large-area application compared with hydrogenated amorphous silicon TFT (a-Si:H) and organic semiconductor TFT. For the reasonable characteristics of TAOS, The a-IGZO has the excellent performances such as low temperature fabrication (R.T~), high mobility, visible region transparent, and reasonable on-off ratio. In this study, we investigated how the electric characteristics and physical properties are changed as various oxygen ratio when magnetron sputtering. we analysis a-IGZO film by AFM, EDS and I-V measurement. decreasing the oxygen ratio, the threshold voltage is shifted negatively and mobility is increasing. Through this correlation, we confirm the effect of oxygen ratio. We fabricated the bottom-gate a-IGZO TFTs. The gate insulator, SiO2 film was grown on heavily doped silicon wafer by thermal oxidation method. a-IGZO channel layer was deposited by RF magnetron sputtering. and the annealing condition is $350^{\circ}C$. Electrode were patterned Al deposition through a shadow mask(160/1000 um).

  • PDF

Structural Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리온도에 따른 다이아몬드상 카본박막의 구조적 특성변화)

  • Choi Won-Seok;Park Mun-Gi;Hong Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.701-706
    • /
    • 2006
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the structural variation of the DLC films. The films were annealed at temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film and interface between film and substrate were observed by surface profiler, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), respectively. Raman and X-ray photoelectron spectroscopy (XPS) analysis showed that DLC films were graphitized ($I_D/I_G$, G-peak position and $sp^2/sp^3$ increased) ratio at higher annealing temperature. The variation of surface as a function of annealing treatment was verified by a AFM and contact angle method.

Properties of Polymethyl methacrylate (PMMA) for Polymer Gate Dielectric Thin Films Prepared by Spin Coating (Spin coating 공정을 이용한 Polymethyl methacrylate (PMMA) 박막의 polymer gate dielectric layer로써의 특성평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myoung, In-Hye;Kang, Young-Taec
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.29-32
    • /
    • 2005
  • Poly (methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observeed by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for different thermal treatment temperature. PMMA films were showed proper dielectric constant and breakdown voltage. Above the glass transition temperature PMMA films degraded. C-V measured at various frequencies, dielectric constant increased a little. The absence of hysteresis in the C-V characteristics, which eliminate the possibility of mobile charges in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

A Benzodithiophene-based Semiconducting Polymer for Organic Thin Film Transistor

  • Hong, Jung-A;Kim, Ran;Yun, Hui-Jun;Park, Joung-Man;Shin, Sung Chul;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1170-1174
    • /
    • 2013
  • Benzodithiophene based organic semiconducting polymer was designed and synthesized by stille coupling reaction. The structure of polymer was confirmed by NMR and IR. The weight average molecular weight ($M_w$) of polymer was 8,400 using GPC with polydispersity index of 1.4. The thermal, optical and electrochemical properties of polymer were characterized by TGA and DSC, UV-vis absorption and cyclic voltammetry. OTFT device using PBDT-10 exhibited the mobility of $7.2{\times}10^{-5}\;cm^2\;V^{-1}\;s^{-1}$ and $I_{on}/I_{off}$ of $2.41{\times}10^3$. The film morphology and crystallinity of PBDT-10, was studied using AFM and XRD.

Surface Analysis and Electrical Properties for Complex with Concentration of Metal ion in LB Ultra-thin Films Using IMI-O Polymer (IMI-O 고분자 LB막의 금속 이온의 착체 농도에 따른 전기특성 및 표면분석)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1711-1713
    • /
    • 2000
  • We fabricated an IMI-O polymer containing an imidazole group that could form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the surface analysis and the electrical properties of metal ion complex of Langmuir-Blodgett (LB) films were investigated by using $\pi$-A isotherms. Atomoic force microscopy (AFM), current-voltage (I-V) measurements. In the $\pi$-A isotherms the molecular area was expanded with $Fe^{3+}$ concentration increase. It is considered that the expansion of molecular area is due to electrostatic repulsion between the polymer chains and hydrophobic increase of ionic strength. In the I-V characteristics, it is found that the limiting area has effects on the change of conductivity. And, the dielectric relaxation time decreased for increase of the $Fe^{3+}$ concentration.

  • PDF

Regeneration of a Micro-Scratched Tooth Enamel Layer by Nanoscale Hydroxyapatite Solution

  • Ryu, Su-Chak;Lim, Byoung-Ki;Sun, Fangfang;Koh, Kwang-Nak;Han, Dong-Wook;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.887-890
    • /
    • 2009
  • Hydroxyapatite (HAp)-based materials have attracted considerable attention on account of their excellent stability and recrystallization. Nanoscale HAp powders with a mean particle size of 200 nm were used to regenerate the enamel layers of damaged teeth. An artificially scratched tooth was immersed in a nanoscale HAp powder suspension in d.i. water (HAp of 70 wt%) at 37 ${^{\circ}C}$ for a period of 1~3 months. SEM and AFM showed that the scratched surface was ultimately inlaid with HAp after three months and the roughness increased from 2.80 to 5.51. Moreover, the hardness of the neo-generated HAp layer on the crown was similar to that of the innate layer. $Ca^{2+}$ and ${PO_4}^{3-}$ ions from the HAp powders dissolved in d.i. water were precipitated on the tooth to produce cemented pasteson the enamel surface due to its high recrystallizing characteristics, resulting in a hard neo-regenerated HAp layer on the enamel layer. This nanoscale HAp powder solution might be used to heal decayed teeth as well as to develop tooth whitening appliances.

FABRICATION OF HIGH QUALITY YBa$_2$Cu$_3$O$_{y}$ THIN FILMS USING PULSED LASER DEPOSITION

  • Lee, Eun-Hong;Park, Sang-Jin;Song, I-Hun;Song, In-Sang;Gohng, Jun-Ho;Sok, Jung-Hyun;Lee, Jo-Won
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.437-442
    • /
    • 1996
  • High quality $YBa_2Cu_3O_y$(YBCO) thin films for directly coupled dc superconducting quantum interference device (SQUID) were fabricated by pulsed laser deposition. Several critical parameters have been optimized through systematic studies. Thus, the films showing the $T_c$ of above 91K and $J_c$ of above$2\times10^6A/cm^2$ at 77K were routinely obtained. Extensive AFM and X-ray diffraction studies have been conducted for morphological and structural analyses. The directly coupled DC-SQUIDs were fabricated from the YBCO thin films deposited on $SrTiO_3$ bicrystals under the optimized conditions. The measurement on $2I_c$ and swing voltage give 200$\mu$A and 17$\mu$V at 77K, respectively.

  • PDF

Surface treatment of ITO with Nd:YAG laser and OLED device characteristic (Nd:YAG 레이저로 표면처리된 ITO를 전극으로 한 유기EL 소자의 특성)

  • No, I.J.;Shin, P.K.;Kim, H.K.;Kim, Y.W.;Lim, Y.C.;Park, K.S.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1359-1360
    • /
    • 2006
  • lTO(Indium-Tin-Oxide) was used as anode material for OLED. Characteristics of ITO have great effect on efficiency of OLEDS(Organic light emitting diodes). ITO surface was treated by Nd:YAG laser in order to improve its chemical properties, wettability, adhesive property and to remove the surface contaminants while maintaining its original function. In this study, main purpose was to improve the efficiency of OLEDs by the ITO surface treatment: ITO surface was treated using a Nd:YAG(${\lambda}=266nm$, pulse) with a fixed power of 0.06[w] and various stage scanning velocities. Surface morphology of the ITO was investigated by AFM. Test OLEDs with surface treated ITO were fabricated by deposition of TPD (HTL), Ald3 (ETL/TML) and Al (cathode) thin films. Device performance of the OLEDs such as V-I-L was investigated using Source Measurement Unit (SMU: Keithly. Model 2400) and Luminance Measurement (TOPCON. BM-8).

  • PDF