• Title/Summary/Keyword: Hyundai Motor Company

Search Result 470, Processing Time 0.032 seconds

Corrosion Characteristics Improvement of Aluminium Tube for Diesel Engine Intercooler with LP-EGR(Low Pressure-Exhaust Gas Recirculation) (LP-EGR이 적용된 디젤 엔진 인터쿨러용 알루미늄 튜브의 내식성 향상)

  • Ahn, Joon;Ha, Seok;Kwak, Dong-Ho;Jung, Byung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.140-145
    • /
    • 2012
  • Recently, various after-treatment systems, such as LP-EGR(Low Pressure-Exhaust Gas Recirculation), SCR(Selective Catalytic Reduction) and LNT(Lean NOx Trap), were developed to obey the stringent emission regulations of diesel engine. There are many researches on LP-EGR system because it has advantages of NOx reduction and low fuel consumption. But, condensation water is generated in internal of intercooler tube and it contains various types of anion that cause the corrosion of aluminium tube. In this study, it is examined that the condensation water effects on corrosion of aluminium tube. And method for improvement of corrosion characteristics is investigated using the dipping and electrochemical test.

A Study to Simulate Cell Voltage-Reversal Behavior Caused by Local Hydrogen Starvation in a Stack of Fuel Cell Vehicle (연료전지차 스택 내 국부적 수소 부족에 기인한 셀 역전압 거동 모사에 대한 연구)

  • Park, Ji Yeon;Im, Se Joon;Han, Kookil;Hong, Bo Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.311-319
    • /
    • 2013
  • A clear understanding on cell voltage-reversal behavior due to local hydrogen starvation in a stack is of paramount importance to operate the fuel cell vehicle (FCV) stably since it affects significantly the cell performance and durability. In the present study, a novel experimental method to simulate the local cell voltage-reversal behavior caused by local hydrogen starvation, which typically occurs only one or several cells out of several hundred cells in a stack of FCV, has been proposed. Contrary to the conventional method of overall fuel starvation, the present method of local hydrogen starvation caused the local cell voltage-reversal behavior in a stack very well. Degradation of both membrane electrode assembly (i.e., pin-hole formation) and gas diffusion layer due to an excessive exothermic heat under voltage-reversal condition was also observed clearly.

Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle (8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화)

  • Kwon, Soon-Hyuk;Kim, Min-Su;Choi, Min-Seon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.

AN EXPLORATORY STUDY OF THE EMISSION REDUCTION TECHNOLOGIES COMPLIANT WITH SULEV REGULATIONS

  • Kim, In Tak;Lee, Woo Jik;Yoon, Jong Seok;Park, Chung Kook
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.63-75
    • /
    • 2001
  • This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spray atomization, quick warm-up through coolant control shut of, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, after-treatment such as thin-wall catalyst, HC-adsorber and EHC and etc, through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.

  • PDF

Introduction of Computer Simulation for BIW Electrocoating Process (BIW 전착도장에서의 컴퓨터 시뮬레이션 적용사례)

  • Sohn, DaeHong;Jung, HiZean;Ahn, SeungHo;Kim, ByungSu;Kim, JungYeon;Choi, ByungSam
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The e-coating to inhibit induced corrosion can deposit a coating not only on the exterior surface but also on the inside of whole metallic components of body-in-white (BIW). But it is difficult to deposit paint films on the inside area because metallic components are multi layered. It may cause shortness of e-coating thickness. The only way to properly verify e-coating thickness is by performing the use of tear-down prototypes. When paint films' thickness is inadequate, a structural modification on each metallic component is needed. Verification of the thickness improvement for a structural modification requires much manual effort and leads to increasing development time. Recently, the simulation technology has been developed to predict the e-coating thickness in e-coating field. By applying the simulation to BIW, improvement in paint thickness quality and shortening of development period are expected. The paper explains a validated solution that allows simulating the effect of design changes to the e-coating thickness and current density, thereby delivering results within a time frame of a few days.

Development of High Performance MEA by Decal Method for PEM Fuel Cell (데칼 공정을 적용한 고성능 MEA 개발)

  • Lee, Ki-Sub;Lee, Jae-Seung;Kwon, Nak-Hyun;Hwang, In-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2011
  • This study has focused on the development of high performance membrane-electrode assemblies (MEAs) fabricated by decal method for proton exchange membrane fuel cell (PEMFC). To study the effect of ionomer contents on performance, we fabricated MEAs with several electrodes which were prepared by varying the quantity of ionomer from 20 wt.% to 45 wt.% in catalyst layer. The MEA performance was obtained through single cell test. The MEA prepared from electrode with 25wt.% of ionomer showed the best performance. We evaluated the surface area and pore volume of electrode with BET. We found that the surface area and pore volume in electrode decreased rapidly at the electrode with 40wt.% of ionomer in catalyst layer. MEA was fabricated by roll laminator machine and the roll laminating conditions for the preparation of MEA, such as laminating press, temperature and speed, were optimized. The MEA performance is not affected by laminating temperature and speed, but roll laminating press have a great effect on MEA performance.

Research for the Development of a pRMC Program for the Planetary Gear Noise (유성기어 소음을 고려한 pRMC 프로그램 개발 및 적용에 관한 연구)

  • Lee, Hyun Ku;Kim, Moo Suk;Suh, Hyun Seung;Kim, Jin Ho;Kahraman, Ahmat;Harianto, Jonny;Kwon, Hyun Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.669-674
    • /
    • 2013
  • To design the optimized low noise planetary gear sets, a program called pRMC(planetary run many cases) is developed. The pRMC is especially using a combination analysis method for all gear specifications and also able to analyze any type of planetary gear sets. The pRMC is composed of the 5 sections those are generate, setting, evaluate, combine and analysis. After calculating all candidate gear sets, the pRMC could show many results that represent the character of each gear set including the transmission error which is the main gear noise factor, the contact ratios, the bending stress and so on. By comparing the results objectively, user could predict and select the optimized gear set which has quiet noise level and desired durability. The planetary gear designed by pRMC could have reduced noise and vibration level from 5 to 10 dB than previous-designed one.

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

Effect of Operating Conditions on Cold Startup of PEMFC Stack (운전조건에 따른 PEMFC 스택 냉시동 특성 연구)

  • Ko, Jae-Jun;Lee, Jong-Hyun;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • The improvement of cold start capability is one of the most challenging tasks to be solved for commercialization of fuel cell vehicle. In this study, cold start test and ice blocking test(IBT) of fuel cell stack were carried out under various operating conditions. This fuel cell stack can be thawed from -20$^{\circ}$C within 25s and the voltage change was found to be comprised of 4 steps; the first step is the voltage decrease by overpotential, the second step is the voltage increase by the cell temperature increase, the third step is the voltage decrease by ice blocking, and the last step is the voltage increase by thawing. Bootstrap startup was failed after shutdown at temperature under 40$^{\circ}$C because of much condensed water in the fuel cell. Quantitative estimation of cold start capability have been demonstrated by ice blocking test(IBT). In the results, it was found that cold start capability was improved double every 10$^{\circ}$C from 30$^{\circ}$C to 65$^{\circ}$C and enhanced by 30% at the condition of SR 3/4 compared to SR 1.5/2.0 and enhanced by 20% with dry purge condition compared to with RH 50% purge condition.

PEMFC Characterization Study by in-situ Analysis Method (In-Situ 분석법에 의한 연료전지 특성 연구)

  • Kim, Young-Min;Lee, Jong-Hyun;Im, Se-Joon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.