• Title/Summary/Keyword: Hysteretic behavior model

Search Result 227, Processing Time 0.03 seconds

Analytical Study on Discontinuous Displacement in Reinforced Concrete Column-Footing Joint under Earthquake (지진시 철근콘크리트 기둥-기초 접합부의 불연속 변위에 관한 해석적 연구)

  • 김태훈;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.83-90
    • /
    • 2000
  • This paper presents an analytical prediction of the elastic behavior of discontinuous displacement in reinforced concrete column-footing joint under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The proposed numerical method for hysteretic behavior of discontinuous displacement in reinforced concrete column-footing joint will be verified by comparison with reliable experimental results.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

Structural health monitoring for pinching structures via hysteretic mechanics models

  • Rabiepour, Mohammad;Zhou, Cong;Chase, James G.;Rodgers, Geoffrey W.;Xu, Chao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.245-258
    • /
    • 2022
  • Many Structural Health Monitoring (SHM) methods have been proposed for structural damage diagnosis and prognosis. However, SHM for pinched hysteretic structures can be problematic due to the high level of nonlinearity. The model-free hysteresis loop analysis (HLA) has displayed notable robustness and accuracy in identifying damage for full-scaled and scaled test buildings. In this paper, the performance of HLA is compared with seven other SHM methods in identifying lateral elastic stiffness for a six-story numerical building with highly nonlinear pinching behavior. Two successive earthquakes are employed to compare the accuracy and consistency of methods within and between events. Robustness is assessed across sampling rates 50-1000 Hz in noise-free condition and then assessed with 10% root mean square (RMS) noise added to responses at 250 Hz sampling rate. Results confirm HLA is the most robust method to sampling rate and noise. HLA preserves high accuracy even when the sampling rate drops to 50 Hz, where the performance of other methods deteriorates considerably. In noisy conditions, the maximum absolute estimation error is less than 4% for HLA. The overall results show HLA has high robustness and accuracy for an extremely nonlinear, but realistic case compared to a range of leading and recent model-based and model-free methods.

Analysis of Hysteretic Giant Magnetoimpedance Using Stoner-Wohlfarth Model

  • Jang, K.J.;Kim, C.G.;Kim, D.Y.;Kim, C.O.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.85-89
    • /
    • 2000
  • The hysteretic characteristics of giant magnetoimpedance (GMI) profiles have been measured in Co-based amorphous ribbon with various anisotropy angles $\theta_k$, and they have been analyzed by using the Stoner-Wohl-farth model. Two-peaks behavior with a dip near zero field is revealed in the measured GMI profile at 10 MHz irrespective of $\theta_k$. The negligible hysteresis of the field fur the dip is close to the calculation assuming the magnetization jump from a metastable to stable state. However, the hysteretic asymmetry far the angle range of $20^\circ\leq\theta_k < 60^\circ$ is well described by the divergence in the calculation without the magnetization jump. The asymmetry for $\theta_k\geq60^\circ$ may be due to the divergence, but the shapes of measured profiles are quite different from the calculations with single peak near zero field, indicating that Stoner-Wohlfarth model can be well used to describe GMI characteristics for the anisotropy angle range of $20^\circ\leq\theta_k < 60^\circ$at the frequency of 10 MHz in Co-based amorphous ribbons.

  • PDF

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근위치가 다른 철근콘크리트 부재의 거동 분석)

  • Kim, Ji-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.333-336
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" and ductility in the post-yield hysteretic loops. In this paper, four RC elements are considered to study the effect of the steel grid orientation on "pinching effect" and ductility. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops are studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Performance evaluation of a rocking steel column base equipped with asymmetrical resistance friction damper

  • Chung, Yu-Lin;Du, Li-Jyun;Pan, Huang-Hsing
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.49-61
    • /
    • 2019
  • A novel asymmetrical resistance friction damper (ARFD) was proposed in this study to be applied on a rocking column base. The damper comprises multiple steel plates and was fastened using high-strength bolts. The sliding surfaces can be switched into one another and can cause strength to be higher in the loading direction than in the unloading direction. By combining the asymmetrical resistance with the restoring resistance that is generated due to an axial load on the column, the rocking column base can develop a self-centering behavior and achieve high connection strength. Cyclic tests on the ARFD proved that the damper performs a stable asymmetrical hysteretic loop. The desired hysteretic behavior was achieved by tuning the bolt pretension force and the diameter of the round bolt hole. In this study, full-scale, flexural tests were conducted to evaluate the performance of the column base and to verify the analytical model. The results indicated that the column base exhibits a stable self-centering behavior up to a drift angle of 4%. The decompression moment and maximum strength reached 42% and 88% of the full plastic moment of the section, respectively, under a column axial force ratio of approximately 0.2. The strengths and self-centering capacity can be obtained by determining the bolt pretension force. The analytical model results revealed good agreement with the experimental results.

Probabilistic Damage Assessment of Concrete Structures (콘크리트 구조물의 확률적 응답특성을 이용한 손상평가모델)

  • 오병환;이성로;윤철호;이성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.119-123
    • /
    • 1991
  • The concrete structures subjected to strong earthquakes may undergo hysteretic behavior and result in severe damage. The inelastic behavior and steffness degradation due to seismic loading must be properly modeled. The present study proposes a realistic model to assess the structural damage of concrete structures under seismic loadings. The present model also takes into account the probabilistic nature of seimic loading and thus the randomness of motion.

  • PDF