• Title/Summary/Keyword: Hysteresis current controller

Search Result 82, Processing Time 0.024 seconds

Low Speed Servo System for Brushless Motor (브러시리스 전동기의 저속 서어보 시스템)

  • Lee, Woon-Young;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper proposes a servo control system of brushless motor at a low and high speed range. The control system is composed of the PI controller for high-speed control and the modified PI controller for low-speed control and the current controller using the hysteresis current control PWM method. The speed control performance is shown by the computer simulation.

  • PDF

A CRPWM Boost Type AC/DC Converter based on Modified Trapezoidal PWM (Modified Trapezoidal PWM을 베이스로 한 CRPWM Boost Type AC/DC Converter)

  • 권영원;노의철;김인동;김만고;전성즙;조철제;문성득
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.342-345
    • /
    • 1999
  • This paper describes a current regulated PWM boost type rectifier based on modified trapezoidal PWM. Each switch of a converter has no switching for one third period of a fundamental line current. Therefore, the switching loss of the proposed scheme is less than that of the hysteresis current controller. Operating principle is described and controller. Operating principle is described and simulations and experiments are carried out.

  • PDF

Performance Improvement of Induction Motor in Voltage Shortage State (전압 부족 상태 시 유도 전동기 성능 개선)

  • Kim, Hye-Seung;Kim, Jeong-Ha;Hong, Chan-Ook;Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.466-471
    • /
    • 2009
  • The vector control algorithm has come to be used as induction motor for high performance torque and response improvement. This paper deals with new control algorithm which improves the performance of the rotor flux control by combining the conventional current controller with the flux controller and the hysteresis controller. In voltage shortage condition, proposed algorithm shows that the response and the stability can be improved both in the simulation results and in the experimental results.

A Design of Position Control System of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 위치제어 시스템 설계)

  • Kim Min-Huei;Baik Won-Sik;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.249-253
    • /
    • 2004
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller. Although SRM possess several advantages including simple structure and high efficiency, the control drive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo drive system of SRM. So, the position control system of 1 Hp SRM is developed and evaluated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

  • PDF

Development of 3 Phase PWM Converter using Analog Hysteresis Current Controller (아날로그 히스테리시스 전류 제어기를 적용한 3상 PWM 컨버터 개발)

  • Lee Young-kook;Noh Chul-won
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.372-376
    • /
    • 2001
  • Due to several advantages of Pulse Width Modulation(PWM) Converter, such as unity power factor operation, elimination of low-order harmonics and regeneration of motor braking energy to source, the application range of PWM Converter has been rapidly extended in industrial application. Nowadays, vector control algorithm and space vector PWM(SVPWM) method are applied to improve the performances of PWM Converter, but vector control algorithm and SVPWM require to use Microprocessor and other digital devices in hardware, causing costly and somewhat large dimension system. In every practical application of energy conversion equipments, the design and implementation should be carried out considering cost and performance. High performance and low cost is the best choice for energy conversion equipments. So, this paper presents the practical design method and implementation results of 3-phase PWM Converter with analog hysteresis current controller, and verifies the performances of unit power factor operation and energy regeneration operation via experimental results.

  • PDF

Control Characteristics of Current Controlled PWM Using Vector Control in VSI-IM Drive System (VSI-IM 구동 시스템에 벡터제어를 이용한 전류제어 PWM 방식의 제어특성)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.38-50
    • /
    • 1991
  • A current-controlled scheme of pulse width modulation voltage source inverter (PWM VSI) has attracted considerable attention due to its fast response with current limit and especially suitable for potentially high performance applications such as AC motor drives and UPS systems. These features yield near-sinusoidal currents in the load with reduced current peaks, lower inverter switching frequency and reduce inverter and load stresses. A high performance current-controlled inverter must have a quick response in transient state and low harmonic current in steady state. This paper compares and shows the controlled-characteristics with hysteresis controller(HC), ramp comparison controller(RCC) and predictive controller(PC) of PWM inverter to control actual current of VSI-IM.

  • PDF

An Induction Motor Control System with Direct Torque and Flux Control (직접 토크 및 자속제어에 의한 유도전동기 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.79-84
    • /
    • 2000
  • This paper presents an implementation of digital position control system for an induction motor vector drives by a direct torque control(DTC) using the 16bit DSP TMS320 F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controller for motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux and torque observer using current model that inputs are current sensing of motor terminal and rotor angle for a low speed operating area, two hysteresis controller, optimal switching look-up table, and IGBT voltage source inverter by fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.

A Study on the Sensorless Speed Control of Permanent Magnet Direct Current Motor (영구자석 직류전동기의 센서리스 속도제어에 관한 연구)

  • Oh, Sae-Gin;Kim, Hyun-Chel;Kim, Jong-Su;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.694-699
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of permanent magnet DC motor using a numerical model and hysteresis controller, which requires neither shaft encoder, speed estimator nor PI controllers. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing torque difference, the rotor speed approaches to the model speed, namely setting value and the system can control motor speed precisely. As the numerical model whose electric parameters are the same as those of the actual motor is adopted, the armature rotating speed can be converged to the setting value by controlling torque on both sides to be equalized. And the hysteresis controller controls torque by restricting the torque errors within respective hysteresis bands, and motor torque are controlled by the armature voltage. The experiment results indicate good speed and load responses from the low speed range to the high, show accurate speed changing performance.