• Title/Summary/Keyword: Hysteresis control

Search Result 482, Processing Time 0.027 seconds

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.

A Study on the magnetic properties of Mn-Zn Ferrite (Mn-Zn Ferrite의 자기적 특성에 관한 연구)

  • Kim Do-Hwan;Choi Young-Ji;Kwon Oh-Heung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.898-901
    • /
    • 2006
  • In this paper, effect of ceramic processing was investigated on the magnetic properties of low loss Mn-Zn ferrite. High frequency characteristics, high saturated magnetic flux density and high magnetic permeability and low magnetism loss are required for the development of Mn-Zn ferrite, which is parts in the communication. therefore, in order to improve Mn-Zn ferrite with a high frequency , it is important to have a minimal change of particles and to control the eddy current loss caused by high resistance of the stratum of particles and to reduce the hysteresis loss by uniform change of detailed structure. In this paper, we added $V_2O_5\;and\;CaCo_3$ to Mn-Zn Ferrite to achieve a high efficiency, low loss core material. The compositions are MnO : ZnO : $Fe_2O_3$ = 21 : 10 : 69 mol%. They were sintered at $1250^{\circ}C$ for Three hours. Initial permeability was measured at 0.1MHz. At 50mT, Power loss was measured by temperature changing at 100kHz.

  • PDF

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control (계면 제어를 통한 그래핀 기반 전계효과 트랜지스터의 환경 안정성 향상)

  • Seong, Jun Ho;Lee, Dong Hwa;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.75-79
    • /
    • 2022
  • Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.

Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives

  • Temesgen Tadeyos Zate;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jeong-Woo Sun;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.214-225
    • /
    • 2023
  • Piezoelectric actuators, which utilize piezoelectric crystals or ceramics, are commonly used in precision positioning applications, offering high-speed response and precise control. However, the use of low-performance ceramics and expensive single crystals is limiting their versatile use in the actuator market, necessitating the development of both high-performance and cost-effective piezoelectric materials capable of delivering higher forces and displacements. The use of textured Pb (lead)-based piezoelectric ceramics formed by so-called templated grain growth method has been identified as a promising strategy to address the performance and cost issue. This review article provides insights into recent advances in texturing Pb-based piezoelectric ceramics for improved performance in actuation applications. We discussed the relevant issues in detail focusing on current challenges and emerging trends in the textured piezoelectric ceramics for their reliability and performance in actuator applications. We discussed in detail focusing on current challenges and emerging trends of textured piezoelectric ceramics for their reliability and performance in actuator applications. In conclusion, the article provides an outlook on the future direction of textured piezoelectric ceramics in actuator applications, highlighting the potential for further success in this field.

A study on the thermal-mechanical fatigue life prediction of 12 Cr steel (12 Cr 강의 열피로 수명단축에 관한 연구)

  • Ha, Jeong-Soo;Kim, Kun-Young;Ahn, Hye-Thon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF

On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite (소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구)

  • Kang, Myoung-Soo;Hwang, Jai-Hyuk;Bae, Jae-Sung;Park, Jean-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.757-764
    • /
    • 2015
  • Mathematical modeling of focal plane compensation device in the small earth-observation satellite camera has been conducted experimently for compensation of micro-vibration disturbance. The PZT actuators are used as control actuators for compensation device. It is quite difficult to build up mathematical model because of hysteresis characteristic of PZT actuators. Therefore, the compensation device system is assumed as a $2^{nd}$ order linear system and modeled by using MATLAB System Identification Toolbox. It has been found that four linear models of compensation device are needed to meet 10% error in the input frequency range of 0~50Hz. These models describe accurately the dynamics of compensation device in the 4 divided domains of the input frequency range of 0~50Hz, respectively. Micro-vibration disturbance can be compensated by feedback control strategy of switching four models appropriately according to the input frequency.

Damping System Design for Apartment Buildings Using Equivalent Frame Model (등가프레임모델을 이용한 공동주택의 감쇠시스템 설계)

  • Kim, Jong-Ho;Lee, Myoung-Kyu;Chun, Young-Soo;Lee, Dong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.351-360
    • /
    • 2014
  • The purpose of this research is to introduce the simplified equivalent frame model for the equivalent lateral force procedure, the response spectrum procedure and nonlinear procedure according to ASCE7-10 in order to reduce the time of performance and reasonably evaluate the effect of applying the damping system with the various conditions for the analysis and the variable. In this research, the seismic performance assessment and the design of the damping system were conducted through the nonlinear time history analysis based on the performance based seismic design in ASCE7-10 in regard to applying the damping system to apartment buildings which is lately issued. The optimal design based on the 75% of seismic base shear was performed for an apartment building. The seismic performance assessment were conducted to check the safety of the building, and the economic evaluation was performed by comparing the amount of resource for the optimal designed building with the amount of resource for the original building. In addition, hysteresis dampers was applied to the apartment building, and the suggested equivalent frame model was performed using the damping system design in ASCE7-10, then its control effects were proved in the full scale model of the apartment building which was used in this research.

Semiconductor wafer exhaust moisture displacement unit (반도체 웨이퍼 공정 배기가스 수분제어장치)

  • Chan, Danny;Kim, Jonghae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5541-5549
    • /
    • 2015
  • This paper introduces a safer and more power efficient heater by using induction heating, to apply to the semiconductor wafer fabrication exhaust gas cleaning system. The exhaust gas cleaning system is currently made with filament heater that generates an endothermic reaction of N2 gas for the removal of moisture. Induction theory, through the bases of theoretical optimization and electronic implementation, is applied in the design of the induction heater specifically for the semiconductor wafer exhaust system. The new induction heating design provides a solution to the issues with the current energy inefficient, unreliable, and unsafe design. A robust and calibrated design of the induction heater is used to optimize the energy consumption. Optimization is based on the calibrated ZVS induction circuit design specified by the resonant frequency of the exhaust pipe. The fail-safe energy limiter embedded in the system uses a voltage regulator through the feedback of the MOSFET control, which allows the system performance to operate within the specification of the N2 Heater unit. A specification and performance comparison from current conventional filament heater is made with the calibrated induction heater design for numerical analysis and the proof of a better design.