• 제목/요약/키워드: Hypoxia-inducible factor (HIF)

검색결과 145건 처리시간 0.026초

Establishment of a Stable Cell Line Expressing Green Fluorescence Protein-fused Hypoxia Inducible Factor-1α for Assessment of Carcinogenicity of Chemical Toxicants

  • Kim, Sung-Hye;Seo, Hee-Won;Lee, Min-Ho;Chung, Jin-Ho;Lee, Byung-Hoon;Lee, Mi-Ock
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.189-193
    • /
    • 2009
  • Hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) is a potential marker of carcicnogenesis since it is overexpresssed in many human cancers such as brain, breast, and uterus, and its role has implicated in tumor cell growth and metastasis. In this study, we established a stable cell line that express green fluorescence protein (GFP)-fused hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) and evaluated the potential use of this cell line for assessment of carcinogenicity of chemical toxicants. Western blot analysis as well as fluorescence measurements showed that protein-level of GFP-HIF-$1\alpha$ was significantly enhanced in a dose-dependent manner upon treatment of hypoxia mimicking agents such as dexferrioxamine and $CoCl_2$. Well-Known tumor promoters such as mitomycin and methyl methanesulfonate. significantly induced the fluorescence intensity of GFP-HIF-$1\alpha$, whereas the known negative controls such as o-anthranilic acid and benzethonium chloride, did not. These results indicate that HIF-$1\alpha$ could be a biological parameter for detection of tumor initiators/promoters and suggest that the GFP-HIF-$1\alpha$ cell line is a useful system for screening of carcinogenic toxicants.

식도 편평세포암에시 Hypoxia-inducible Factor-1 $\alpha$의 발현: 예후와 종양표지자와의 상관성 (Expression of Hypoxia-inducible Factor-1 $\alpha$ in Esophageal Squamous Cell Carcinoma: Relationship to Prognosis and Tumor Biomarkers)

  • 양일종;김종인;이해영;천봉권;조성래
    • Journal of Chest Surgery
    • /
    • 제37권8호
    • /
    • pp.691-701
    • /
    • 2004
  • 배경: 악성종양에서 신생혈관 생성 및 당분해의 증가는 저산소 상태의 미세환경을 나타내며, 이는 종양의 침습성, 전이 등으로 환자의 예후와 관련이 있는 것으로 알려져 있다. Hypoxia-inducible factor 1(HIF-1)는 당원 수송체, 당분해 효소, 혈관내피세포 성장인자 등의 유전자의 전사를 활성화한다고 알려져 있다. 그리고 HIF-1의 전사 활성도는 HIF-1 a subunit의 표현이 조절되는 정도에 의존한다. 그러나 식도암에서 HIF-1의 발현과 혈관 생성능 및 종양세포 증식능과의 관계 및 예후에 관한 연구는 전무하다. 대상 및 방법: 고신대학교 의과대학 흉부외과학교실에서 1995년부터 2000년까지 수술치험한 77예의 식도 편평세포암 환자의 조직에서 채취한 정상 편평상피와 암조직에서 면역조직화학검사를 이용하여 HIF-1 a의 발현을 조사하고 혈관생성인자, 증식지수, p53 단백과의 상관관계, 임상-병리학적인 인자 및 생존율과의 상관관계를 분석하였다. 결과: HIF-1 a의 고발현율은 42.9% (33예/77예)였다. HIF-1 a의 고발현은 조직학적 등급(p=0.032), 병리학적 병기(p=0.002), 종양 침윤의 깊이(p=0.022), 주위 림프절 전이(p=0.002), 원격전이(p=0.049), 림프관 침윤(p=0.004)과 관련이 있었다. HIF-1 a의 고발현은 혈관내피세포 성장인자의 발현, Ki-67 증식지수와 관련이 있었으나, 미세혈관수와는 관련이 없었고, p53의 발현과는 관련이 있는 경향을 보였다. 단변량분석과 다변량분석에서 HIF-1 a의 고발현은 불량한 예후를 나타내는 인자로 보였다. 결론: 식도 편평세포암 조직에서 HIF-1 a의 발현은 종양조직내 신생혈관의 생성과 관련이 있는 것으로 나타났고, 고발현 된 경우는 림프절 전이와 수술 후 불량한 예후를 나타내었으므로 보다 강화된 치료전략이 필요할 것으로 사료된다.

Effects of hypoxia inducible factors-$1{\alpha}$ on autophagy and invasion of trophoblasts

  • Choi, Jong-Ho;Lee, Hyun-Jung;Yang, Tae-Hyun;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권2호
    • /
    • pp.73-80
    • /
    • 2012
  • Objective: This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-$1{\alpha}$ on the cell death, autophagy, and invasion of trophoblasts. Methods: To understand the effect of HIF-$1{\alpha}$, we inhibited HIF-$1{\alpha}$ using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-$1{\alpha}$. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results: There was no difference in cell death through the inhibition of HIF-$1{\alpha}$ expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-$1{\alpha}$ expression by siRNA. These experimental results mean that HIF-$1{\alpha}$ genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion: This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-$1{\alpha}$ and autophagy.

Serum Tumor Markers, Hypoxia-Inducible factor-1α HIF-1α and Vascular Endothelial Growth Factor, in Patients with Non-small Cell Lung Cancer Before and after Intervention

  • Liang, Jun;Qian, Ying;Xu, Dan;Yin, Qun;Pan, Hui-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3851-3854
    • /
    • 2013
  • Objective: To explore changes in the serum tumor makers, hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF) level and their relations in patients with non-small cell lung cancer (NSCLC) before and after intervention. Materials and Methods: Forty patients with NSCLC and 40 healthy individuals undergoing physical examination in our hospital provided the observation and control groups. HIF-$1{\alpha}$ and VEGF levels in serum were detected by enzyme-linked immuno-sorbent assay (ELISA) in the observation group before and after intervention and in control group on the day of physical examination, along with serum carcino-embryonic antigen (CEA), neuron-speci ic enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in the observation group with a fully automatic biochemical analyzer. Clinical effects and improvement of life quality in the observation group were also evaluated. Results: The total effective rate and improvement of life quality after treatment in observation group were 30.0% and 32.5%, respectively. Serum HIF-$1{\alpha}$ and VEGF levels in the control group were lower than that in observation group (p<0.01), but remarkably elevatedafter intervention (p<0.01). In addition, serum CEA, NSE and SCC levels were apparently lowered by treatment (p<0.01). Serum HIF-$1{\alpha}$ demonstrated a positive relation with VEGF level (p<0.01) and was inversely related with CEA, NSE and SCC levels (p<0.01). Conclusions: Significant correlations exist between marked increase of serum HIF-$1{\alpha}$ and VEGF levels and decrease of indexes related to hematological tumor markers in NSCLC patients after intervention.

Hypoxia-inducible factor: role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia

  • Jeon, Ga Won;Sheldon, R. Ann;Ferriero, Donna M.
    • Clinical and Experimental Pediatrics
    • /
    • 제62권12호
    • /
    • pp.444-449
    • /
    • 2019
  • Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies. Purpose: HIF-1α deficient mice have increased brain injury after neonatal hypoxia-ischemia (HI), and the role of HIF-2α in HI is not well characterized. Copper-zinc superoxide dismutase (SOD)1 overexpression is not beneficial in neonatal HI. The expression of HIF-1α and HIF-2α was measured in SOD1 overexpressing mice and compared to wild-type littermates to see if alteration in expression explains this lack of benefit. Methods: On postnatal day 9, C57Bl/6 mice were subjected to HI, and protein expression was measured by western blotting in the ipsilateral cortex of wild-type and SOD1 overexpressing mice to quantify HIF-1α and HIF-2α. Spectrin expression was also measured to characterize the mechanism of cell death. Results: HIF-1α protein expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, HIF-2α protein expression increased 30 minutes after HI injury in the wild-type and SOD1 overexpressing mouse cortex and decreased to baseline value at 24 hours after HI injury. Spectrin 145/150 expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, spectrin 120 expression increased in both wild-type and SOD1 overexpressing mouse at 4 hours after HI, which decreased by 24 hours, indicating a greater role of apoptotic cell death. Conclusion: HIF-1α and HIF-2α may promote cell survival in neonatal HI in a cell-specific and regional fashion. Our findings suggest that early HIF-2α upregulation precedes apoptotic cell death and limits necrotic cell death. However, the influence of SOD was not clarified; it remains an intriguing factor in neonatal HI.

INSULIN AND HYPOXIA INDUCE VEGF AND GLYCOLITIC ENZYMES VIA DIFFERENT SIGNALING PATHWAYS

  • Park, Youngyeon;Park, Hyunsung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.199-199
    • /
    • 2001
  • Both hypoxia and insulin induce same target genes including vascular endothelial growth factor (VEGF), glycolitic enzymes and glucose transporters. However these two signals eventually trigger quite different metabolic pathways. Hypoxia induces glycolysis for anaerobic ATP production, while insulin increase glycolysis for lipogenesis and energy storage. Hypoxia-induced gene expression is mediated by Hypoxia-inducible Factorl (HIF-1) that consists of HIF-1 $\alpha$ and $\beta$ subunit.(omitted)

  • PDF

Anti-Tumor Effect of IDF-11774, an Inhibitor of Hypoxia-Inducible Factor-1, on Melanoma

  • Kim, Nan-Hyung;Jeong, Jong Heon;Park, Yu Jeong;Shin, Hui Young;Choi, Woo Kyoung;Lee, Kyeong;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.465-472
    • /
    • 2022
  • Melanoma is one of the most aggressive skin cancers. Hypoxia contributes to the aggressiveness of melanoma by promoting cancer growth and metastasis. Upregulation of cyclin D1 can promote uncontrolled cell proliferation in melanoma, whereas stimulation of cytotoxic T cell activity can inhibit it. Epithelial mesenchymal transition (EMT) plays a critical role in melanoma metastasis. Hypoxia-inducible factor-1α (HIF-1α) is a main transcriptional mediator that regulates many genes related to hypoxia. CoCl2 is one of the most commonly used hypoxia-mimetic chemicals in cell culture. In this study, inhibitory effects of IDF-11774, an inhibitor of HIF-1α, on melanoma growth and metastasis were examined using cultured B16F10 mouse melanoma cells and nude mice transplanted with B16F10 melanoma cells in the presence or absence of CoCl2-induced hypoxia. IDF-11774 reduced HIF-1α upregulation and cell survival, but increased cytotoxicity of cultured melanoma cells under CoCl2-induced hypoxia. IDF-11774 also reduced tumor size and local invasion of B16F10 melanoma in nude mice along with HIF-1α downregulation. Expression levels of cyclin D1 in melanoma were increased by CoCl2 but decreased by IDF-11774. Apoptosis of melanoma cells and infiltration of cytotoxic T cells were increased in melanoma after treatment with IDF-11774. EMT was stimulated by CoCl2, but restored by IDF11774. Overall, IDF-11774 inhibited the growth and metastasis of B16F10 melanoma via HIF-1α downregulation. The growth of B16F10 melanoma was inhibited by cyclin D1 downregulation and cytotoxic T cell stimulation. Metastasis of B16F10 melanoma was inhibited by EMT suppression.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.