• Title/Summary/Keyword: Hypoxia-inducible factor (HIF)

Search Result 144, Processing Time 0.032 seconds

Establishment of a Stable Cell Line Expressing Green Fluorescence Protein-fused Hypoxia Inducible Factor-1α for Assessment of Carcinogenicity of Chemical Toxicants

  • Kim, Sung-Hye;Seo, Hee-Won;Lee, Min-Ho;Chung, Jin-Ho;Lee, Byung-Hoon;Lee, Mi-Ock
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.189-193
    • /
    • 2009
  • Hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) is a potential marker of carcicnogenesis since it is overexpresssed in many human cancers such as brain, breast, and uterus, and its role has implicated in tumor cell growth and metastasis. In this study, we established a stable cell line that express green fluorescence protein (GFP)-fused hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) and evaluated the potential use of this cell line for assessment of carcinogenicity of chemical toxicants. Western blot analysis as well as fluorescence measurements showed that protein-level of GFP-HIF-$1\alpha$ was significantly enhanced in a dose-dependent manner upon treatment of hypoxia mimicking agents such as dexferrioxamine and $CoCl_2$. Well-Known tumor promoters such as mitomycin and methyl methanesulfonate. significantly induced the fluorescence intensity of GFP-HIF-$1\alpha$, whereas the known negative controls such as o-anthranilic acid and benzethonium chloride, did not. These results indicate that HIF-$1\alpha$ could be a biological parameter for detection of tumor initiators/promoters and suggest that the GFP-HIF-$1\alpha$ cell line is a useful system for screening of carcinogenic toxicants.

Expression of Hypoxia-inducible Factor-1 $\alpha$ in Esophageal Squamous Cell Carcinoma: Relationship to Prognosis and Tumor Biomarkers (식도 편평세포암에시 Hypoxia-inducible Factor-1 $\alpha$의 발현: 예후와 종양표지자와의 상관성)

  • 양일종;김종인;이해영;천봉권;조성래
    • Journal of Chest Surgery
    • /
    • v.37 no.8
    • /
    • pp.691-701
    • /
    • 2004
  • Background: Tissue hypoxia is a characteristic of many human malignant neoplasms, and hypoxia inducible factor-1 (HIF-1) plays a pivotal role in essential adaptive response to hypoxia, and activates a signal pathway for the expression of the hypoxia-regulated genes, resulting in increased oxygen delivery or facilitating metabolic adaptation to hypoxia. Increased level of HIF-1 a has been reported in many human malignancies, but in esophageal squamous cell carcinoma, the influence of HIF-1 a on tumor biology, including neovascularization, is not still defined. Material and Method: The influence of HIF-1 a expression on angiogenic factors, correlation between the tumor proliferation and HIF-1 a expression, interaction of HIF-1 a expression and p53, and correlation between HIF-1 a expression and clinicopathological prognostic parameters were investigated, using immunohistochemical stains for HIF-1 a, VEGF, CD34, p53, and Ki-67 on 77 cases of resected esophageal squamous cell carcinoma. Result: HIF-1 a expression in cancer cells was found in 33 of 77 esophageal squamous cell carcinoma cases. The 33 cases (42.9%) showed positive stain for HIF-1 a. High HIF-1 a expression was significantly associated with several pathological parameters, such as histologic grade (p=0.032), pathological TMN stage (p=0.002), the depth of tumor invasion (p=0.022), regional lymph node metastasis (p=0.002), distant metastasis (p=0.049), and lymphatic invasion (p=0.004). High HIF-1 a expression had significant VEGF immunoreactivity (p=0.008) and Ki-67 labeling index (p<0.001), but was not correlated with microvascular density within tumors (p=0.088). The high HIF-1 a expression was correlated with aberrant p53 accumulation with a marginal significance (p=0.056). The overall 5-year survival rate was 34.9%. The survival rate of patients with a high HIF-1 a expression was worse than that of patients with low-expression tumors (log-rank test, p=0.0001). High HIF-1 a expression was independent unfavorable factors although statistical significance is marginal in multivariate analysis. Conclusion: It is suggested that (1) high HIF-1 a expression in esophageal squamous cell carcinoma is associated with tumor hypoxia, or with genetic alteration in early carcinogenesis and progressive stages, (2) high HIF-1 a expression may be associated with intratumoral neovascularization through HIF-VEGF pathway, and (3) high HIF-1 a expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma and may playa role as biomarker for regional lymph node metastasis.

Effects of hypoxia inducible factors-$1{\alpha}$ on autophagy and invasion of trophoblasts

  • Choi, Jong-Ho;Lee, Hyun-Jung;Yang, Tae-Hyun;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • Objective: This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-$1{\alpha}$ on the cell death, autophagy, and invasion of trophoblasts. Methods: To understand the effect of HIF-$1{\alpha}$, we inhibited HIF-$1{\alpha}$ using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-$1{\alpha}$. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results: There was no difference in cell death through the inhibition of HIF-$1{\alpha}$ expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-$1{\alpha}$ expression by siRNA. These experimental results mean that HIF-$1{\alpha}$ genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion: This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-$1{\alpha}$ and autophagy.

Serum Tumor Markers, Hypoxia-Inducible factor-1α HIF-1α and Vascular Endothelial Growth Factor, in Patients with Non-small Cell Lung Cancer Before and after Intervention

  • Liang, Jun;Qian, Ying;Xu, Dan;Yin, Qun;Pan, Hui-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3851-3854
    • /
    • 2013
  • Objective: To explore changes in the serum tumor makers, hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF) level and their relations in patients with non-small cell lung cancer (NSCLC) before and after intervention. Materials and Methods: Forty patients with NSCLC and 40 healthy individuals undergoing physical examination in our hospital provided the observation and control groups. HIF-$1{\alpha}$ and VEGF levels in serum were detected by enzyme-linked immuno-sorbent assay (ELISA) in the observation group before and after intervention and in control group on the day of physical examination, along with serum carcino-embryonic antigen (CEA), neuron-speci ic enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in the observation group with a fully automatic biochemical analyzer. Clinical effects and improvement of life quality in the observation group were also evaluated. Results: The total effective rate and improvement of life quality after treatment in observation group were 30.0% and 32.5%, respectively. Serum HIF-$1{\alpha}$ and VEGF levels in the control group were lower than that in observation group (p<0.01), but remarkably elevatedafter intervention (p<0.01). In addition, serum CEA, NSE and SCC levels were apparently lowered by treatment (p<0.01). Serum HIF-$1{\alpha}$ demonstrated a positive relation with VEGF level (p<0.01) and was inversely related with CEA, NSE and SCC levels (p<0.01). Conclusions: Significant correlations exist between marked increase of serum HIF-$1{\alpha}$ and VEGF levels and decrease of indexes related to hematological tumor markers in NSCLC patients after intervention.

Hypoxia-inducible factor: role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia

  • Jeon, Ga Won;Sheldon, R. Ann;Ferriero, Donna M.
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.12
    • /
    • pp.444-449
    • /
    • 2019
  • Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies. Purpose: HIF-1α deficient mice have increased brain injury after neonatal hypoxia-ischemia (HI), and the role of HIF-2α in HI is not well characterized. Copper-zinc superoxide dismutase (SOD)1 overexpression is not beneficial in neonatal HI. The expression of HIF-1α and HIF-2α was measured in SOD1 overexpressing mice and compared to wild-type littermates to see if alteration in expression explains this lack of benefit. Methods: On postnatal day 9, C57Bl/6 mice were subjected to HI, and protein expression was measured by western blotting in the ipsilateral cortex of wild-type and SOD1 overexpressing mice to quantify HIF-1α and HIF-2α. Spectrin expression was also measured to characterize the mechanism of cell death. Results: HIF-1α protein expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, HIF-2α protein expression increased 30 minutes after HI injury in the wild-type and SOD1 overexpressing mouse cortex and decreased to baseline value at 24 hours after HI injury. Spectrin 145/150 expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, spectrin 120 expression increased in both wild-type and SOD1 overexpressing mouse at 4 hours after HI, which decreased by 24 hours, indicating a greater role of apoptotic cell death. Conclusion: HIF-1α and HIF-2α may promote cell survival in neonatal HI in a cell-specific and regional fashion. Our findings suggest that early HIF-2α upregulation precedes apoptotic cell death and limits necrotic cell death. However, the influence of SOD was not clarified; it remains an intriguing factor in neonatal HI.

INSULIN AND HYPOXIA INDUCE VEGF AND GLYCOLITIC ENZYMES VIA DIFFERENT SIGNALING PATHWAYS

  • Park, Youngyeon;Park, Hyunsung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.199-199
    • /
    • 2001
  • Both hypoxia and insulin induce same target genes including vascular endothelial growth factor (VEGF), glycolitic enzymes and glucose transporters. However these two signals eventually trigger quite different metabolic pathways. Hypoxia induces glycolysis for anaerobic ATP production, while insulin increase glycolysis for lipogenesis and energy storage. Hypoxia-induced gene expression is mediated by Hypoxia-inducible Factorl (HIF-1) that consists of HIF-1 $\alpha$ and $\beta$ subunit.(omitted)

  • PDF

Anti-Tumor Effect of IDF-11774, an Inhibitor of Hypoxia-Inducible Factor-1, on Melanoma

  • Kim, Nan-Hyung;Jeong, Jong Heon;Park, Yu Jeong;Shin, Hui Young;Choi, Woo Kyoung;Lee, Kyeong;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.465-472
    • /
    • 2022
  • Melanoma is one of the most aggressive skin cancers. Hypoxia contributes to the aggressiveness of melanoma by promoting cancer growth and metastasis. Upregulation of cyclin D1 can promote uncontrolled cell proliferation in melanoma, whereas stimulation of cytotoxic T cell activity can inhibit it. Epithelial mesenchymal transition (EMT) plays a critical role in melanoma metastasis. Hypoxia-inducible factor-1α (HIF-1α) is a main transcriptional mediator that regulates many genes related to hypoxia. CoCl2 is one of the most commonly used hypoxia-mimetic chemicals in cell culture. In this study, inhibitory effects of IDF-11774, an inhibitor of HIF-1α, on melanoma growth and metastasis were examined using cultured B16F10 mouse melanoma cells and nude mice transplanted with B16F10 melanoma cells in the presence or absence of CoCl2-induced hypoxia. IDF-11774 reduced HIF-1α upregulation and cell survival, but increased cytotoxicity of cultured melanoma cells under CoCl2-induced hypoxia. IDF-11774 also reduced tumor size and local invasion of B16F10 melanoma in nude mice along with HIF-1α downregulation. Expression levels of cyclin D1 in melanoma were increased by CoCl2 but decreased by IDF-11774. Apoptosis of melanoma cells and infiltration of cytotoxic T cells were increased in melanoma after treatment with IDF-11774. EMT was stimulated by CoCl2, but restored by IDF11774. Overall, IDF-11774 inhibited the growth and metastasis of B16F10 melanoma via HIF-1α downregulation. The growth of B16F10 melanoma was inhibited by cyclin D1 downregulation and cytotoxic T cell stimulation. Metastasis of B16F10 melanoma was inhibited by EMT suppression.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.