• Title/Summary/Keyword: Hypothermia

Search Result 296, Processing Time 0.037 seconds

Hypothermia Regulates Endoplasmic Reticulum (ER) Stress through the X-box Binding Protein-1 (XBP1) Gene Expression in PC12 Cells

  • Yoo, Bo-Kyung;Kwon, Kisang;Lee, Eun Ryeong;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.416-420
    • /
    • 2017
  • Endoplasmic reticulum (ER) stress induces unfolded protein response (UPR) via inositol-requiring enzyme 1 (IRE1) activation, which sends a molecular signal for X box-binding protein 1 (XBP1) mRNA splicing in the cytosol. IRE1 endoribonuclease activity induces cleavage of XBP1 mRNA. The XBP1 mRNA is then ligated by an uncharacterized RNA ligase and translated to produce spliced XBP1 by 23 nt removed in which contains the PstI restriction enzyme site. The splicing of XBP1 mRNA can be detected by semiquantitative RT-PCR, and then splicing of XBP1 is a useful tool to measure the genetic variability in ER stress. In this study, we have estimated IRE1-dependent splicing of XBP1 mRNA under conditions of various hypothermia. The results indicated that hypothermia regulated ER stress. This study demonstrated that hypothermia is closely related to ER stress and may be useful for early diagnosis of ER-associated disease.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Short-term Hypothermia Induces Beta-catenin-interacting Protein 1 Gene Expression in PC12 Cells

  • Kwon, Kisang;Yoo, Bo-Kyung;Lee, Eun Ryeong;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.21 no.3
    • /
    • pp.160-163
    • /
    • 2015
  • The effects of hypothermic treatment ($32^{\circ}C$) on recovery from ischemia are controversial because the precise mechanisms of hypothermia remain unclear. We demonstrated previously that hypothermia induces beta-catenin-interacting protein 1 (CTNNBIP1) gene expression in vitro. In this study, we evaluated the effects of various hypothermic conditions, including lithium chloride treatment, on CTNNBIP1 gene expression. The results show that short-term hypothermic treatment resulted in relatively higher CTNNBIP1 gene expression than that of a longer treatment. These findings indicate that hypothermia controls CTNNBIP1 gene expression, which may provide clues to develop treatments to recover from and diagnose ischemia.

Incidence of Peripheral Cyanosis in Patients with Therapeutic Hypothermia after Cardiac Arrest in the Acute Care Unit of a Tertiary General Hospital (일개 상급종합병원 응급중환자실 내 심정지 후 저체온요법을 적용한 환자의 말초 청색증 발생 현황)

  • Bang, Soo Youn;Yi, Young Hee
    • Journal of Korean Critical Care Nursing
    • /
    • v.14 no.3
    • /
    • pp.128-140
    • /
    • 2021
  • Purpose : This study aimed to identify the incidence of peripheral cyanosis and the characteristics and clinical results of patients with therapeutic hypothermia after a cardiac arrest. Methods : Data were collected from April to June 2021 via the electrical medical records of 95 patients with therapeutic hypothermia for 72 hours after a cardiac arrest admitted to an acute care unit at a tertiary hospital between January 1, 2016, and December 31, 2019. The data were analyzed using descriptive statistics and a t-test, Mann-Whitney U test, Chi-squared test, Fisher's exact test, and logistic regression using SPSS/WIN. Results : The incidence of peripheral cyanosis was 20%. In the peripheral cyanosis group, peripheral vascular disease, fibrinogen, vasopressor, infection, disseminated intravascular coagulation, acute physiology, chronic health evaluation II score on the second hospital day, nursing intervention, and mortality on the seventh hospital day were higher. The level of fibrinogen and use of vasopressors affected the occurrence of peripheral cyanosis. Conclusion : Considering the influencing variables, careful observation is necessary for patients with high fibrinogen levels and vasopressor use. These results provide basic data to recognize the need for nursing intervention for peripheral cyanosis and encourage nurses to deliver them during therapeutic hypothermia.

Role of Catecholamines in Ventricular Fibrillation (Catecholamines에 관(關)하여 -제4편(第四編) : 심실전동발생(心室顫動發生)에 있어서의 catecholamines의 의의(意義)-)

  • Lee, Woo-Choo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.15-35
    • /
    • 1983
  • Although it has been well known that ventricular fibrillation is the most important complication during hypothermia, much investigation has failed to show the exact nature of the etiology of ventricular fibrillation. Recently, there has been considerable research on the relationship between sympathetic activity and ventricular fibrillation under hypothermia. Cardiac muscle normally contains a certain amount of norepinephrine and the dramatic effect of this catecholamines on the cardiac muscle is well documented. It is, therefore, conceivable that cardiac catecholamines might exert an influence on the susceptibility of heart muscle to tachycardia, ventricular fibrillation and arrhythmia, under hypothermia. Hypothermia itself is stress enough to increase tonus of sympatheticoadrenal system. The normal heart is supplied by an autonomic innervation and is subjected to action of circulating catecholamines which may be released from the heart. If the reaction of the heart associated with a variable amount of cardiac catecholamines is. permitted to occur in the induction of hypothermia, the action of this agent on the heart has not to be differentiated from the direct effects of cooling. The studies presented in this paper were designed to provide further information about the cardio-physiological effects of reduced body temperature, with special reference to the role of catecholamines in ventricular fibrillation. Healthy cats, weighing about 3 kg, were anesthetized with pentobarbital(30 mg/kg) intraperitoneally. The trachea was intubated and the endotracheal tube was connected to a C.F. Palmer type A.C. respirator. Hypothermia was induced by immersing the cat into a ice water tub and the rate of body temperature lowering was $1^{\circ}C$ per 5 to 8 min. Esophageal temperature and ECG (Lead II) were simultaneously monitored. In some cases the blood pH and serum sodium and potassium were estimated before the experiment. After the experiment the animals were killed and the hearts were excised. The catecholamines content of the cardiac muscle was measured by the method of Shore and Olin (1958). The results obtained are summarized as follows. 1) In control animal the heart rate was slowed as the temperature fell and the average pulse rates of eight animals were read 94/min at $31^{\circ}C$, 70/min at $27^{\circ}C$ and 43/min at $23^{\circ}C$ if esophageal temperature. Ventricular fibrillation was occurred with no exception at a mean temperature of $20.3^{\circ}C(21-l9^{\circ}C)$. The electrocardiogram revealed abnormal P waves in each progressive cooling of the heart. there was, ultimately, a marked delay in the P-R interval, QRS complex and Q-T interval. Inversion of the T waves was characteristic of all animals. The catecholamines content of the heart muscle excised immediately after the occurrence of ventricular fibrillation was about thirty percent lower than that of the pre-hypothermic heart, that is, $1.0\;{\mu}g/g$ wet weight compared to the prehypothermic value of $1.41\;{\mu}g/g$ wet weight. The changes of blood pH, serum sodium and potassium concentration were not remarkable. 2) By the adrenergic receptor blocking agent, DCI(2-3 mg/kg), given intramuscularly thirty minutes before hypothermia, ventricular fibrillation did not occur in one of five animals when their body temperature was reduced even to $16^{\circ}C$. These animals succumbed at that low temperature, and the changes of heart rate and loss of myocardial catecholamines after hypothermia were similar to those of normal animals. The actual effect of DCI preventing the ventricular fibrillation is not predictable. 3) Administration of reserpine(1 mg/kg, i.m.) 24 hours Prior to hypothermia disclosed reduced incidence of ventricular fibrillation, that is, six of the nine animals went into fibrillation at an average temperature of $19.6^{\circ}C$. By reserpine myocardial catecholamines content dropped to $0.045\;{\mu}g/g$ wet weight. 4) Bretylium pretreatment(20 mg/kg, i.m.), which blocks the release of catecholamines, Prevented the ventricular fibrillation under hypothermia in four of the eight cats. The pulse rate, however, was approximately the same as control and in some cases was rather slower. 5) Six cats treated with norepinephrine(2 mg/kg, i.m.) or DOPA(50 mg/kg) and tranylcypromine(10 mg/kg), which tab teen proved to cause significant increase in the catecholamines content of the heart muscle, showed ventricular fibrillation in all animals under hypothermia at average temperature of $21.6^{\circ}C$ and the pulse rate increased remarkably as compared with that of normal. Catecholamines content of cardiac muscle of these animals markedly decreased after hypothermia but higher than control animals. 6) The functional refractory periods of isolated rabbit atria, determined by the paired stimulus technique, was markedly shortened by administration of epinephrine, norepinephrine and isoproterenol. 7) Adrenergic beta-blocking agents, such as pronethalol, propranolol and sotalol(MJ-1999), inhibited completely the shortening of refractory period induced by norepinephrine. 8) Pretreatment with either phenoxftenbamine or phentolamine, an adrenergic alphatlocking agent, did not modify the decrease in refractory period induced by norepinephrine. From the above experiment it is possible to conclude that catecholamines play an important role in producing ventricular fibrillation under hypothermia. The shortening of the refractorf period of cardiac muscle induced by catecholamines mar be considered as a partial factor in producing ventriculr fibrillaton and to be mediated by beta-adrenergic receptor.

  • PDF

A case of Hypothermia Resulting from Disulfiram-Ethanol Reaction (다이설피람-에탄올 반응에 의한 저체온증 1례)

  • Bae, Hyun-A;Eo, Eun-Kyung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.1
    • /
    • pp.54-57
    • /
    • 2004
  • Disulfiram (tetraethylthiuram disulphid) is used in the treatment of chronic alcoholism since it causes an unpleasant aversive reaction to alcohol. It works by inactivating hepatic aldehyde dehydrogenase, leading to pronounced rise in the acetaldehyde concentration when ethanol is metabolized. Acetaldehyde causes alcohol sensitivity, which involve vasodilation associated with feeling of hotness and facial flushing, increased heart rate and respiration rates, lowered blood pressure, nausea, headache. One of its metabolites, diethyldithiocarbamate (DDC) can inhibit the enzyme dopamine $\beta$-hydroxylase (DBH), this may account for the profound refractory hypotension and hypothermia seen with the disulfiram-ethanol reaction (DER), resulting from norepinephrine depletion. This report is presents the case of a patient we met, who presented with hypothermia caused by the disulfiram-ethanol reaction, and along with a brief review of the subject.

  • PDF

Hypothermia alleviates hypoxic ischemia-induced dopamine dysfunction and memory impairment in rats

  • Ko, Il-Gyu;Cho, Han-Jin;Kim, Sung-Eun;Kim, Ji-Eun;Sung, Yun-Hee;Kim, Bo-Kyun;Shin, Mal-Soon;Cho, Seh-Yung;KimPak, Young-Mi;Kim, Chang-Ju
    • Animal cells and systems
    • /
    • v.15 no.4
    • /
    • pp.279-286
    • /
    • 2011
  • Hypoxic ischemia injury is a common cause of functional brain damage, resulting from a decrease in cerebral blood flow and oxygen supply to the brain. The main problems associated with hypoxic ischemia to the brain are memory impairment and dopamine dysfunction. Hypothermia has been suggested to ameliorate the neurological impairment induced by various brain insults. In this study, we investigated the effects of hypothermia on memory function and dopamine synthesis following hypoxic ischemia to the brain in rats. For this purpose, a step-down avoidance task, a radial eight-arm maze task, and immunohistochemistry for tyrosine hydroxylase (TH) and 5-bromo-2'-deoxyuridine (BrdU) were performed. The present results indicated that the hypoxic ischemia-induced disturbance of the animal's performances and spatial working memory was associated with a decrement in TH expression in the substantia nigra and striatum, and an increase in cell proliferation in the hippocampal dentate gyrus. Hypothermia treatment improved the animals' performance and spatial working memory by suppressing the decrement in TH expression in the substantia nigra and striatum and the increase in cell proliferation in the dentate gyrus. We suggest that hypothermia can be an efficient therapeutic modality to facilitate recovery following hypoxic ischemia injury to the brain, presumably by modulating the dopaminergic cell loss.

Effects of Mild Hypothermia and Aquatic Exercise on Functional Activity after Spinal Cord Injury in the Rats (백서의 척수손상 후 중강도 저체온법과 수중운동이 운동기능에 미치는 영향)

  • Yoon, Young-Jeoi;Lee, Jeong-Hun;Lee, Byung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 2010
  • This study was designed to investigate the effects of mild hypothermia and Aquatic exercise on function Activity after experimental Spinal Cord Injury(SCI) rats. Experimental groups were divided into the control group (non-treatment after SCI induction), group I(hypothermia after SCI induction), group II(exercise after SCI induction), group III(hypothermia and exercise after SCI induction). After operation, rats were examined neurological motor behavior test at 3, 7, 14, 21 days and Immunohistochemical assessment at 3, 7, 21 days.Each other 14 days were a statistically significant difference between control group and group II, III(p<.001) in BBB scale, between control group and group III(p<.05) in grid walk test. In mmunohistochemical assessment, there was appeared highest express in group III. Based on these results, mild hypothermia and exercise was effected functional Activity after SCI.

Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition

  • Chung, Yoon Hee;Oh, Keon Woong;Kim, Sung Tae;Park, Eon Sub;Je, Hyun Dong;Yoon, Hyuk-Jun;Sohn, Uy Dong;Jeong, Ji Hoon;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.139-145
    • /
    • 2018
  • The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane $A_{2-}$, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities.

Effects of Posttraumatic Hypothermia in an Animal Model of Traumatic Brain Injury(TBI) - Immunohistochemical Stain by TUNEL & β-APP - (실험적 외상성 뇌손상모델에서 외상 후 저체온법의 효과 - TUNEL과 β-APP Immunohistochemical Stain -)

  • An, Byeong Kil;Ha, Young Soo;Hyun, Dong Keun;Park, Chong Oon;Kim, Joon Mee
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.461-470
    • /
    • 2000
  • Objective : Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury(TBI) in both animals and humans. It has long been recognized that mild to moderate hypothermia improves neurologic outcomes as well as reduces histologic and biochemical sequelae after TBI. In this study, two immunohistochemical staining using terminal deoxynucleotidyl-transferase-mediated biotin dUTP nick end labeling(TUNEL), staining of apoptosis, and ${\beta}$-amyloid precursor protein(${\beta}$-APP), a marker of axonal injury, were done and the authors evaluated the protective effects of hypothermia on axonal and neuronal injury after TBI in rats. Material and Method : The animals were prepared for the delivery of impact-acceleration brain injury as described by Marmarou and colleagues. TBI is achieved by allowing of a weight drop of 450gm, 1 m height to fall onto a metallic disc fixed on the intact skull of the rats. Fourty Sprague-Dawley rats weighing 400 to 450g were subjected to experimental TBI induced by an impact-acceleration device. Twenty rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over 30-minute period. Following 12 hours, 24 hours, 1 week and 2 weeks later the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the apoptosis and ${\beta}$-APP. Results : The density of ${\beta}$-APP marked damaged axons within the corticospinal tract at the pontomedullary junction and apoptotic cells at the contused cerebral cortex were calculated for each animal. In comparison with the untreated controls, a significant reduction in ${\beta}$-APP marked damaged axonal density and apoptotic cells were found in all hypothermic animals(p<0.05). Conclusion : This study shows that the posttraumatic hypothermia result in substantial protection in TBI, at least in terms of the injured axons and neurons.

  • PDF