• 제목/요약/키워드: Hypergeometric Fourier transform

검색결과 5건 처리시간 0.019초

QUALITATIVE UNCERTAINTY PRINCIPLES FOR THE INVERSE OF THE HYPERGEOMETRIC FOURIER TRANSFORM

  • Mejjaoli, Hatem
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.129-151
    • /
    • 2015
  • In this paper, we prove an $L^p$ version of Donoho-Stark's uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$. Next, using the ultracontractive properties of the semigroups generated by the Heckman-Opdam Laplacian operator, we obtain an $L^p$ Heisenberg-Pauli-Weyl uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$.

THE HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM'S THEORY AND ITS APPLICATION TO A ROOT SYSTEM OF TYPE BCd

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.221-267
    • /
    • 2019
  • In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.

APPARENT INTEGRALS MOUNTED WITH THE BESSEL-STRUVE KERNEL FUNCTION

  • Khan, N.U.;Khan, S.W.
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.163-174
    • /
    • 2019
  • The veritable pursuit of this exegesis is to exhibit integrals affined with the Bessel-Struve kernel function, which are explicitly inscribed in terms of generalized (Wright) hypergeometric function and also the product of generalized (Wright) hypergeometric function with sum of two confluent hypergeometric functions. Somewhat integrals involving exponential functions, modified Bessel functions and Struve functions of order zero and one are also obtained as special cases of our chief results.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

  • Lee, Il-Yong;Chung, Hyun-Soo;Chang, Seung-Jun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.87-102
    • /
    • 2012
  • In this paper, we consider the Fourier-type functionals introduced in [16]. We then establish the analytic Feynman integral for the Fourier-type functionals. Further, we get a series expansion of the analytic Feynman integral for the Fourier-type functional $[{\Delta}^kF]^{\^}$. We conclude by applying our series expansion to several interesting functionals.